Application of Artificial Intelligence

Opportunities and limitations through life & Earth sciences examples

Clovis Galiez

Statistiques pour les sciences du Vivant et de l'Homme

April 3, 2019

Goal

- Discover and practice machine learning (ML) techniques
 - Linear regression
 - Logistic regression
 - Neural networks
- Experiment some limitations
 - Curse of dimensionality
 - Hidden overfitting
 - Sampling bias
- Towards autonomy with ML techniques
 - Design experiments
 - Organize the data
 - Evaluate performances

Announcement

8th of April 2019. 18:30-19:30. Building Ensimag, Amphi D.

Conference Yves Demazeau (UGA):

"Panorama de l'IA".

Announcement

18th of April 2019. 10:00-12:00. Building ARSH, Bat. B1

Conference Alain Létourneau (University of Sherbrook):

Al and ethics.

Today's outline

- Short summary of the last lecture
- Experiment the curse of dimensionality (tutorial)
- Logistic regression

Remember

Remember

What do you remember from last lecture?

• Phantasm and opportunities of AI

Remember

- Phantasm and opportunities of AI
- Microbiomes

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality
 - Overfit can stem from too many features (capacity of description increases exponentially)
 - More data helps

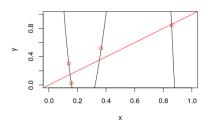
Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality
 - Overfit can stem from too many features (capacity of description increases exponentially)
 - More data helps
 - Restricting the parameter space: regularization
 - Ridge
 - Lasso

Ridge regularization example

Let's come back to the model $Y = \sum\limits_{i=0}^{3} \beta_i x^i + \epsilon.$

The maximum likelihood with 4 points will give a $\vec{\beta}$ fitting perfectly the points:



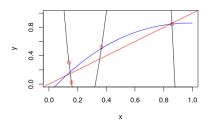
Maximum likelihood coefficients:

$$\beta_0$$
 β_1 β_2 β_3 5.169 -54.388 155.755 -114.487

Ridge regularization example

Let's come back to the model $Y = \sum_{i=0}^{3} \beta_i x^i + \epsilon$.

With a prior $\mathcal{N}(0, \eta^2)$ the maximum a posteriori of the vector $\vec{\beta}$ corresponds to (blue curve):



Maximum a posteriori coefficients

$$\beta_0$$
 β_1 β_2 β_3 -0.1279 2.2561 -1.5779 0.3180

Ridge regularization

Consider the linear model $Y = \sum \vec{\beta} \cdot \vec{x_i} + \epsilon$.

Exercise

1. Show that the maximum likelihood solution is the same as the solution of the following optimization problem:

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2$$

2. Show that putting a Gaussian prior centered on zero on the parameters is the same as solving the following optimization problem:

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2 + \lambda ||\vec{\beta}||_2^2$$

This is called ridge regularization. What is it enforcing?

Ridge regularization

Consider the linear model $Y = \sum \vec{\beta} \cdot \vec{x_i} + \epsilon$.

Exercise

1. Show that the maximum likelihood solution is the same as the solution of the following optimization problem:

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2$$

2. Show that putting a Gaussian prior centered on zero on the parameters is the same as solving the following optimization problem:

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2 + \lambda ||\vec{\beta}||_2^2$$

This is called **ridge regularization**. What is it enforcing? It tells the model **to avoid high values** for the parameters.

From ridge to lasso

Suppose you model a variable Y depending on some explanatory variables x with a linear model:

$$Y = \beta_0 + \sum_{i=1}^{N} \beta_i . x_i + \epsilon$$

Imagine now that you know that actually **only few** variables actually explain your target variable.

Question!

Gaussian priors on β_i centered on 0 avoid high values of β_i . Will it push the non-explanatory variables down to 0?

- Think individually (5')
- Vote

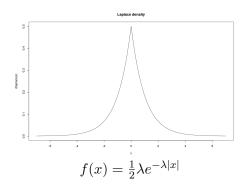
Lasso penalization

What should be the shape around 0 of the prior distribution if we want to use less parameters?

Lasso penalization

What should be the shape around 0 of the prior distribution if we want to use less parameters?

Something like:



Exercise

Work out the formula to see what the model will minimize.

Show that curse of dimensionality happens!

Design a simple experiment showing the curse of dimensionality in the linear regression setting.

- Individual reflexion (5')
- Small group reflexion (5-10')
- Individual implementation in R (20')

Experimental plan

Simulate in R a dependence between a Gaussian vector \vec{X} and an output variable.

Find the maximum likelihood of the parameters of a linear regression. Add components to \vec{X} that are not related to the output variable? Are the

coefficients near to 0?

Regularization

Complete your experiment to show that regularization helps.

- Individual reflexion (2')
- Small group reflexion (3-5')
- Individual implementation in R (20')

Experimental plan

Use the R package glmnet to implement a ridge and lasso regularization. Optimize the parameters of the regularized linear regression.

Are the non-explanatory coefficients near to 0? For which regularization?

Logistic regression (classification)

Let:

- \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

Let:

- \bullet \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

A predictor $f:\mathbb{R}^M_+ \to [0,1]$ is a

Let:

- \bullet \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

A predictor $f:\mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have

Let:

- \bullet \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

A predictor $f: \mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have $f(\vec{x}) \approx z$ for realizations \vec{x}, z of \vec{X}, Z .

Let:

- \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

A predictor $f: \mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have $f(\vec{x}) \approx z$ for realizations \vec{x}, z of \vec{X}, Z .

Which loss?

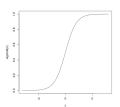
Logistic regression

The best predictor is: $f(\vec{x}) = p(Z=1|\vec{x})$. Problem: $p(Z=1|\vec{x})$ is unknown.

Many situations¹ lead to the following form:

$$p(Z=1|x) = \sigma(\vec{w}.\vec{x}+b)$$

where the function σ is the logistic sigmoid $\sigma: x \mapsto \frac{1}{1+e^{-x}}$



¹For instance $\vec{x}|Z=i\sim\mathcal{N}(\vec{\mu_i},\Sigma)$, or x_i 's being discrete.

Conditional likelihood

Exercise

- 1. Show that it is not possible to find the parameters \vec{w} by maximum likelihood if we don't know the distribution of \vec{x} .
- 2. Let $f(\vec{x})=p(Z=1|\vec{x})=\sigma(\vec{w}.\vec{x}+b)$. Show that the *conditional* log-likelihood $LL=\log P(z_1,...,z_N|\vec{x}_1,...,\vec{x}_N,\vec{w},b)$ writes:

$$LL(\vec{w}, b) = \sum_{i=1}^{N} [z_i \cdot \log f(\vec{x}_i) + (1 - z_i) \cdot \log(1 - f(\vec{x}_i))]$$

- 3. To what well-known loss the optimization of this conditional likelihood corresponds?
- 4. Interpret geometrically the role of parameters \vec{w} and b.

Curse of dimensionality in classification

From the previous exercise, if the k^{th} component of the feature vector \vec{x} plays no role in the classification process, what should be the value of w_k ?

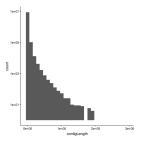
What can you expect in practice?

If you expect only few explanatory components in your vector of features \vec{x} , what shall you do?

See you next week to work with regressions!

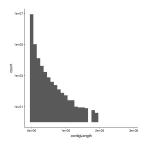
Noisy mixture: the metagenomic struggle!

Assembly process breaks with intra-population variations.



Noisy mixture: the metagenomic struggle!

Assembly process breaks with intra-population variations.



Millions of small contigs coming from thousands of species...

ATGATCAGTATTACCTGACAGTAGCTTG

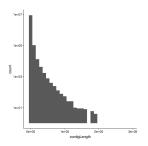
ATGATCAGTATTTACGTATACTACCTGAC

TTACTCAGTTATTACCTGACAGTAGCTT

ATGATCAGTATTACCTGACAGTATACAT

Noisy mixture: the metagenomic struggle!

Assembly process breaks with intra-population variations.



Millions of small contigs coming from thousands of species...

ATGATCAGTATTACCTGACAGTAGCTTG

ATGATCAGTATTTACGTATACTACCTGAC

TTACTCAGTTATTACCTGACAGTAGCTT

ATGATCAGTATTACCTGACAGTATACAT

