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Goal

Discover and practice machine learning (ML) techniques

Linear regression
Logistic regression
Neural networks

Experiment some limitations

Curse of dimensionality
Hidden overfitting
Sampling bias

Towards autonomy with ML techniques

Design experiments
Organize the data
Evaluate performances
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Today’s outline

Short summary of the last lecture

Logistic regression exercise correction

Cross-validation

Application to IBD prediction
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Last lecture

Remember

What do you remember from last lecture?

Curse of dimensionality

Experimental evidence
Regularization helps to get the right parameters

Logistic regression
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Logistic regression

The best predictor is: f(~x) = p(Z = 1|~x). Problem: p(Z = 1|~x) is
unknown.
Many situations1 lead to the following form:

∃~w such that p(Z = 1|x) = σ(~w.~x+ b)

where the function σ is the logistic sigmoid σ : x 7→ 1
1+e−x

1For instance ~x|Z = i ∼ N (~µi,Σ), or xi’s being discrete.
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Conditional likelihood

Exercise

1. Show that it is not possible to find the parameters ~w by maximum
likelihood if we don’t know the distribution of ~x.

2. Let f(~x) = p(Z = 1|~x) = σ(~w.~x+ b). Show that the conditional
log-likelihood LL = logP (z1, ..., zN |~x1, ..., ~xN , ~w, b) writes:

LL(~w, b) =
N∑
i=1

[zi. log f(~xi) + (1− zi). log(1− f(~xi))]

3. To what well-known loss the optimization of this conditional likelihood
corresponds?

4. Interpret geometrically the role of parameters ~w and b.
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Choice of the regularization parameter

min
~β

N∑
i=0

(yi − ~β.~xi)
2 + λ||~β||1

Exercise

1. What happens if λ is small?
2. What happens if λ is huge?

How to choose the right value of the regularization parameter λ?
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Cross-validation

λ should be chose to generalize as best as possible!

X1 X2 ... XN Y

-0.74 0.57 ... -0.82 0
0.26 0.07 ... 0.49 1
-0.53 -0.07 ... 0.71 1
0.69 0.27 ... 0.45 1
-0.79 0.07 ... 0.9 0
-0.18 -0.97 ... -0.25 0
-0.56 -0.21 ... 0.24 1
-0.66 0.16 ... -0.96 1
-0.02 -0.18 ... -0.95 0
-0.44 0.46 ... -0.25 1

Training set
Validation set
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Validation set
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λ should be chose to generalize as best as possible!

X1 X2 ... XN Y

-0.74 0.57 ... -0.82 0
0.26 0.07 ... 0.49 1
-0.53 -0.07 ... 0.71 1
0.69 0.27 ... 0.45 1
-0.79 0.07 ... 0.9 0
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-0.56 -0.21 ... 0.24 1
-0.66 0.16 ... -0.96 1
-0.02 -0.18 ... -0.95 0
-0.44 0.46 ... -0.25 1

→ Val. loss = 0.8

Training set
Validation set
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Cross-validation experimental results

[R package: cv.glmnet]
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Classification of
microbial communities.

Application to human health.
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Microbiome importance in human health

The bright side:
Health status highly correlated with the diversity
of the gut microbiome [Valdes et al. 2018]

The dark side:

[Karch et al. EMBO Mol. Med. 2012]
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Studying the microbiome: hard work!

How to study micro-organisms?

Isolate the organism

Grow in culture

Observe, experiment

Far from being always possible, often need symbiosis.
Only doable for tiny fraction of micro-organisms.

A better way to study micro-organisms?
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Accessing the DNA of the microbiome: shotgun
metagenomics

→ →

Sample Sequencing Fragmented sequences
(reads ∼ 109× 250bp)

Assembly: from reads to contigs:

(Algorithmic and machine learning challenges here!)
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Barcodes to identify species

Some parts of the genome of micro-organisms are specific to each species
and allows to identify them.

For example the 16S region in bacteria:
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The big picture

DNA−−−−−−→
information

sample catalog of species
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Metagenomics insights on the human gut microbiome

2000’s 2010’s
Human genome Gut metagenomes

≈ 20k protein-coding genes

×100−−−→ ≈ 2M protein-coding genes

Human gut microbiome is rich!
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MWAS: metagenome-wide association studies

Relates the variation of the microbiome to the phenotype.

Today

You will diagnosis Inflammatory Bowel Disease through the structure of
the gut microbial community.
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MWAS in an ideal world

sampling sequencing assembly

→ →

species catalog species abundances predictive model

→ → σ(
∑
wisi)

It’s a classification problem!
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Predict IBD!

Fetch:

the R script at
clovisg.github.io/teaching/asdia/ctd3/ibd.zip

the data at
clovisg.github.io/teaching/asdia/ctd3/ibdStart.zip

Microbial species abundances have been computed for 396 individuals (148
with IBD, 248 healthy).

Your mission

Build a model that predicts IBD status based on the microbial composition
of their gut.
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See you next week to work with
regressions!
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Noisy mixture: the metagenomic struggle!

Assembly process breaks with intra-population variations.

Millions of small contigs coming from thousands of species...

→
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