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Today's outline

@ Short summary of last lectures
o Embeddings
@ Ranking
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IR main steps
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Information retrieval (IR) is the activity of obtaining information system resources relevant to
an information need from a collection of information resources. Searches can be based on full-text
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What structure?
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Ways to index

What structure? Inverse sparse index

What content? Boolean indexation or...

Definition tf-idf

The matrix M which rows — corresponding to each document — are:

___#tinD
Dt - #toke:; inD x I(t)

is called the tf-idf (term frequency-inverse document frequency)
representation.

v

What are the advantages of the vector model 7 \
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Ways to index

What structure? Inverse sparse index

What content? Boolean indexation or...

Definition tf-idf

The matrix M which rows — corresponding to each document — are:

___#tinD
Dt - #toke:; inD x I(t)

is called the tf-idf (term frequency-inverse document frequency)
representation.

v

What are the advantages of the vector model 7 \

@ Have a direct weightening by information carried by tokens

@ Framework for latent semantics
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A flexible querying system?

With the vector space model, information of the tokens are now
automatically taken into account.

Does it solve the synonymous problem?

Query: result elections United States
Doc title: "White House election: live results!”
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Reminders from linear algebra
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Low rank approximation

Theorem (Eckart—Young—Mirsky)

The best? r-rank approximation M of M is given by the projection on the
subspace formed by the eigenvectors of M " M corresponding to the r
biggest eigen values.

?In the sense minimizing ||M — M||r = DM — i ;)?

The projection to the low rank space (columns of VT in SVD
decomposition M = UXV ") collapse similar (i.e. correlated) tokens to
the same component. This space is called the Latent semantic space.
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Algebra theorem

Eigenvectors of M " M, C; are orthogonal and form a basis of the token

space.
We can define a new scalar product:

ﬁ/ = E aiC_’;-

Q =3 BiC;
We can compare search documents matching query @) using
D'.Q" = > «;.0; or cosim(D', Q') :)
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Embeddings

C. Galiez (LJK-SVH) Information retrieval December 14, 2020 9/25



From (linear) latent semantics to embeddings

In latent semantics, we define base vectors of the vector space of token
frequencies that represent
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In latent semantics, we define base vectors of the vector space of token
frequencies that represent concepts.

We represent documents by projecting their frequency vector in the low
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From (linear) latent semantics to embeddings

In latent semantics, we define base vectors of the vector space of token
frequencies that represent concepts.

We represent documents by projecting their frequency vector in the low
dimensional space formed by the important eigen vectors.

Recent techniques (well, mostly since 2013)
Machine learning techniques can be used to learn better vector
representation? of tokens, and more generally of any data (document,
sentence, word, image, etc.).

“aka embeddings
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Embeddings: a general technique with many derivatives

Many models have been developed for representing various type of data.
Here is a small list of freely available models:

Model Data represented
word2vec | Tokens
GloVe Tokens

fastText | Tokens
doc2vec Documents
dna2vec | Genomic sequences
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|
Word2vec: predict the context of a token
The core idea of word2vec is to learn a vector representation allows to

predict the context of the token. Thereby, tokens appearing in similar
context will be encoded closely in the vector space.

INPUT PROJECTION  QUTPUT

Dw(m

D wit-1)
o1 o1 )

Dwmzl

Skip-gram

[Mikolov, Tomas; et al. (2013)]
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word2vec's latent semantics

The word2vec embeddings have interesting semantic features?.

Table 8: Examples of the word pair relationships, using the best word vectors from 'Ihh.fe(.ﬁ‘ki‘p-
gram maodel trained on 783M words with 300 dimensionaliry).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zine: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

!Note that GloVe is better at this
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Dealing with the truth
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N
How to deal with the truth?

It is almost impossible to deal with truth judgment only from the

document data.
However, we can assume that we trust information com-

ing from authorities (well-known newspaper, official web-
site, etc.).
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e Mi ing from authorities (well-known newspaper, official web-
AKE NEws .
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Rank the results of the querying system according to their authority. \

‘ How do we know who is the authority 7

— We extract it from the web structure
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Authority and web structure

Who is the authority?

If you only represent the web by a graph where each node is a web page
and each directed edge is an HTML link.

How would you recognize an authority?
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If you only represent the web by a graph where each node is a web page
and each directed edge is an HTML link.

@
PageRank

How would you recognize an authority?

The authority is higher when a node is pointed at (by other authorities).

v
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Authority and web structure

Who is the authority?

If you only represent the web by a graph where each node is a web page
and each directed edge is an HTML link.

PageRank

How would you recognize an authority?

The authority is higher when a node is pointed at (by other authorities).

v

Imagine an algorithm able to detect/rank authorities.
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PageRank formalization (simple version)

Random surfer model
Imagine a user having the following behavior clicking on random links on
the Internet.

The more links leading to a page, the more chance (and the more times)
the user visits the page.
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PageRank formalization (simple version)

Random surfer model

Imagine a user having the following behavior clicking on random links on
the Internet.

The more links leading to a page, the more chance (and the more times)
the user visits the page.
After a loooong time, we measure the average number of times the user

visited a given page P, we denote Rp.

Definition of the rank according to PageRank

We define the authority/ranking of a page by the Rp value.
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PageRank algorithm (simple version)

1 ey L
Data: A := graph of the WWW A4;; = {N]‘ if link from j to 4
0 else
Result: Ranking of web pages
Ry:=5;
repeat

RG+D) . AR®)
§ + ||R®W — RE+D ||
until § <e¢;
Algorithm 1: simplified PageRank

Milestone of Google (algo designed by L. Page, Google co-founder), and
drove the initial success of Google.
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-
PageRank without sink effect

What if a page does not have any outgoing connection? l

It will "trap” the user and have an artificially high rank.
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-
PageRank without sink effect

What if a page does not have any outgoing connection? \

It will "trap” the user and have an artificially high rank.

The random eager surfer

Imagine the user having now the following behavior?

@ click on a random link on the current web page with probability p(t)
@ or jump to a random web page on the Internet with probability
1—p(t)

?In the original paper by Page, the balance between the two events is given
by its trap feeling: the more trapped it gets, the more likely the user will jump
somewhere else.
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-
Full PageRank

To avoid a sink effect, we introduce random jumps to a set of pages

encoded in E.
Data: Graph of the WWW

Result: Ranking of web pages
Ry:=5;
repeat
R+ AR®)
d  [|[RO||; — [[RED ||y
RO « RO+D L 4 B
§ + ||ROHD — RO
until § <e¢;
Algorithm 2: PageRank
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PageRank convergence

Convergence of PageRank Computation
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-
Full PageRank

Note that the vector E encodes the distribution of pages where the user is
willing to jump to.
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Full PageRank

Note that the vector E encodes the distribution of pages where the user is
willing to jump to.
6 Personalized PageRank

An important component of the PageRank calculation is E — a vector over the Web pages which
is used as a source of rank to make up for the rank sinks such as cycles with no outedges (see
Section 2.4). However, aside from solving the problem of rank sinks, E turns out to be a powerful
parameter to adjust the page ranks. Intuitively the E vector corresponds to the distribution of web
pages that a random surfer periodically jumps to. As we see below, it can be used to give broad
general views of the Web or views which are focussed and personalized to a particular individual.

Such personalized page ranks may have a number of applications, including personal search
engines. These search engines could save users a great deal of trouble by efficiently guessing a
large part of their interests given simple input such as their bookmarks or home page. We show an
example of this in Appendix A with the “Mitchell” query. In this example, we demonstrate that
while there are many people on the web named Mitchell, the number one result is the home page
of a colleague of John McCarthy named John Mitchell.
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Summary

Tf-Idf vector representation of a document

Flexible vector queries (cosine similarity)

Latent semantics (lower rank projection of the tf matrix)
PageRank
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To go further:

@ How google works:
https://www.google.com/search/howsearchworks/

@ Google research papers on IR: https://research.google/pubs/
7area=information-retrieval-and-the-web
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Next lectures: can we make it?

@ Machine learning in IR
@ TP (Implemenation and experiments around IR systems)
o Tokenizer
o Tf-Idf matrix construction
e Page Rank implementation
e Mini-search engine
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