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1. 

INFORMATION RETRIEVAL AND TEXT 
MINING USING DISTRIBUTED LATENT 

SEMANTIC INDEXING 

FIELD OF THE INVENTION 

This invention is related to a method and system for the 
concept based retrieval and mining of information using a 
distributed architecture. More specifically, the present 
invention partitions a heterogeneous collection of data 
objects with respect to the conceptual domains found therein 
and indexes the content of each partitioned sub-collection 
with Latent Semantic Indexing (LSI), thereby enabling one 
to query over these distributed LSI vector spaces. Vector 
space representations of these Sub-collections of data objects 
can be used to select appropriate sources of information 
needed to respond to a user query or mining operation. 

BACKGROUND 

Latent Semantic Indexing (LSI) is an advanced informa 
tion retrieval (IR) technology that is a variant of the vector 
retrieval method that exploits dependencies or “semantic 
similarity” between terms. It is assumed that there exists 
some underlying or “latent structure in the pattern of word 
usage across data objects, such as documents, and that this 
structure can be discovered statistically. One significant 
benefit of this approach is that, once a suitable reduced 
vector space is computed for a collection of documents, a 
query can retrieve documents similar in meaning or concepts 
even though the query and document have no matching 
terms. 

An LSI approach to information retrieval is detailed in 
commonly assigned U.S. Pat. No. 4,839,853 applies a sin 
gular-value decomposition (SVD) to a term-document 
matrix for a collection, where each entry gives the number 
of times a term appears in a document. A large term 
document matrix is typically decomposed to a set of 
approximately 150 to 300 orthogonal factors from which the 
original matrix can be approximated by linear combination. 
In the LSI-generated vector space, terms and documents are 
represented by continuous values on each of these orthogo 
nal dimensions; hence, are given numerical representation in 
the same space. Mathematically, assuming a collection of m 
documents with n unique terms that, together, forman nxm 
sparse matrix E with terms as its rows and the documents as 
its columns, each entry in E gives the number of times a term 
appears in a document. In the usual case, log-entropy 
weighting (log(tf+1)entropy) is applied to these raw fre 
quency counts before applying SVD. The structure attrib 
uted to document-document and term-term dependencies is 
expressed mathematically in equation (1) as the SVD of E: 

where U(E) is an nxn matrix such that U(E)'U(E)=I, X(E) 
is an nxin diagonal matrix of singular values and V(E) is an 
nxm matrix such that V(E)V(E)=I, assuming for simplic 
ity that E has fewer terms than documents. 
Of course the attraction of SVD is that it can be used to 

decompose E to a lower dimensional vector space k as set 
forth in the rank-k reconstruction of equation (2). 

Because the number of factors can be much smaller than 
the number of unique terms used to construct this space, 
words will not be independent. Words similar in meaning 
and documents with similar content, based on the words they 
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2 
contain, will be located near one another in the LSI space. 
These dependencies enable one to query documents with 
terms, but also terms with documents, terms with terms, and 
documents with other documents. In fact, the LSI approach 
merely treats a query as a “pseudo-document,” or a weighted 
vector Sum based on the words it contains. In the LSI space, 
the cosine or dot product between term or document vectors 
corresponds to their estimated similarity, and this measure of 
similarity can be exploited in interesting ways to query and 
filter documents. This measure of correspondence between 
query vector q and document vector d is given by equation 
(3). 

sim(U(E) q.U. (E)'d) (3) 

In “Using Linear Algebra for Intelligent Information 
Retrieval” by M. Berry et al., SIAM Review 37(4): pp. 
573–595 the authors provide a formal justification for using 
the matrix of left singular vectors U(E) as a vector lexicon. 

Widespread use of LSI has resulted in the identification of 
certain problems exhibited by LSI when attempting to query 
massive heterogeneous document collections. An SVD is 
difficult to compute for extremely large term-by-document 
matrices, and the precision-recall performance tends to 
degrade as collections become very large. Surprisingly, 
much of the technical discussion Surrounding LSI has 
focused on linear algebraic methods and algorithms that 
implement these, particularly problems of applying SVD to 
massive, sparse term-document matrices. Evaluations of the 
effect of changing parameters, e.g., different term weight 
ings and the number of factors extracted by SVD, to the 
performance of LSI have been performed. Most of the 
approaches to make LSI scale better have been sought from 
increasing the complexity of LSIs indexing and search 
algorithms. 

LSI is limited as an information retrieval and text mining 
strategy when document collections grow because with large 
collections there exists an increasing probability of drawing 
documents from different conceptual domains. This has the 
effect of increasing the semantic heterogeneity modeled in a 
single LSI vector space, thus of introducing noise and 
“confusing the LSI search algorithm. As polysemy 
becomes more pronounced in a collection, vectors for terms 
tend to be represented by the centroid of all vectors for each 
unique meaning of the term, and since documents vectors 
are computed from the weighted sum of vectors for the terms 
they contain, the semantics of these are also confounded. 

In general, the number of conceptual domains grows with 
the size of a document collection. This may result from new 
concepts being introduced into the information space, or an 
existing concept becoming extremely large (in number of 
documents) with further differentiation of its sub-concepts. 
In both cases, the compression factor in any vector space 
based method has to be increased to accommodate this 
inflation. 
The deleterious effects of training on a large conceptually 

undifferentiated document collection are numerous. For 
example, assume that documents drawn from two concep 
tual domains, technology and food, are combined without 
Sourcing into a single training set and that LSI is applied to 
this set to create a single vector space. It is easy to imagine 
how the semantics of these two domains might become 
confused. Take for instance the location of vectors repre 
senting the terms “chip’ and “wafer.” In the technology 
domain, the following associations may be found: silicon 
chip, silicon wafer, silicon Valley, and copper wafer. How 
ever, in the food domain the terms chip and wafer take-on 
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different meanings and there may be very different semantic 
relationships: potato chip, corn chip, corn Sugar, Sugar wafer. 
But these semantic distinctions become confounded in the 
LSI vector space. By training on this conceptually undiffer 
entiated corpus, vectors are computed for the shared terms 
“chip' and "wafer that really don’t discriminate well the 
distinct meanings that these terms have in the two concep 
tual domains. Instead, two semantically "diluted vectors 
that only represent the numerical average or “centroid of 
each terms separate meaning in the two domains is indexed. 

Therefore, it would be desirable to have a method and 
system for performing LSI-based information retrieval and 
text mining operations that can be efficiently scaled to 
operate on large heterogeneous sets of data. 

Furthermore, it would be desirable to have a method and 
system for performing LSI-based information retrieval and 
text mining operations on large data sets quickly and accu 
rately. 

Additionally, it would be desirable to have a method and 
system for performing LSI-based information retrieval and 
text-mining operations on large data sets without the del 
eterious effects of mixing conceptually differentiated data. 

Also, it would be desirable to have a method and system 
for the processing of large document collections into a 
structure that enables development of similarity graph net 
works of Sub-collections having related concept domains. 

Additionally, it would be desirable to have a method and 
system that enables a user to query the document collection 
in a flexible manner so that the user can specify the degree 
of similarity necessary in search results. 

SUMMARY 

The present invention provides a method and system for 
taking a massive, heterogeneous set or collection of data 
objects (also referred to as a set of documents) and parti 
tioning it into more semantically homogeneous concept 
spaces or sub-collections. This enables LSI to perform better 
in the respective vector spaces computed for each of these. 
Mathematically, this approach amounts to an approximate 
block-diagonalization of the term-document matrix and 
obtaining SVD's for each of these blocks. The query process 
is then a mapping onto the network of overlapping blocks, 
using similarity metrics to indicate how much these blocks 
actually overlap. 

Preprocessing the heterogeneous document collection 
before computing a term-by-document matrix into Sub col 
lection of documents Sorted by conceptual domain permits 
each domain (sub-collection) to be processed independently 
with LSI. This reduces both storage and computational 
overhead and opens the possibility of distributing vector 
spaces (and searches of them) over a wider network of 
resources. An added benefit of this approach would be 
greater semantic resolution for any one vector space gained 
from fewer dimensions, i.e., LSI models exhibiting greater 
parsimony. 
A large data collection or plurality of data collections are 

screened for the existence of grouping or clustering effects. 
If a data collection is known to be homogenous then the 
initial screening/clustering step may be skipped for that 
collection. This information is then used to segregate docu 
ments into more semantically homogeneous Sub collections 
before applying SVD to each. To determine whether a user's 
query was appropriate for a particular LSI vector space, i.e., 
whether the intended semantics of a query matched those of 
a particular document collection, the paired similarity 
between the semantic structures of all LSI vector spaces is 
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4 
computed. This distance measure is based on the similarity 
of semantic graphs formed from words shared by each pair 
of vector spaces. The semantics for a query might be inferred 
from multiple query terms and by presenting a user with the 
different semantic contexts for query terms represented in all 
LSI vector spaces, then exploit this information to properly 
Source queries and fuse hit lists. The main idea is to partition 
a large collection of documents into Smaller Sub-collections 
that are conceptually independent (or nearly independent) of 
each other, and then build LSI vector spaces for each of the 
sub-collections 

“Conceptual independence may mean the presence of 
Some terms common to two LSI spaces whose semantic 
similarity measure (defined later on) is approximately Zero. 
In this case, the common terms represent polysemy (mul 
tiple meanings for a term) over the conceptual domains 
involved. A multi-resolution conceptual classification is 
performed on each of the resulting LSI vector spaces. In a 
realistic situation, there may be quite a few common terms 
present between any two conceptual domains. To address the 
possible problem of synonymy and polysemy in the query, 
a network/graph of the conceptual domains based on links 
via common terms is generated. Then this graph is examined 
at query time for terms that are nearest neighbors to ensure 
that each contextually appropriate LSI space is properly 
addressed for a user's query terms. The use of LSI in 
developing a query vector enables the user to select a level 
of similarity to the initial query. If a user prefers to receive 
additional documents that may be more peripherally related 
to the initial query, the system will expand the query vector 
using LSI techniques. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 depicts a flow diagram of the method of processing 
document collections in accordance with the present inven 
tion; 

FIGS. 2a and 2b depict flow diagrams of the method of 
processing document collections in accordance with the 
present invention, particularly the generation of data on the 
similarity of sub-collections: 

FIG. 3 depicts a flow diagram of the method of querying 
the collection of documents processed in accordance with 
the methods of the present invention; and, 

FIG. 4 depicts a schematic diagram of one embodiment of 
a distributed LSI system in accordance with the present 
invention. 

DETAILED DESCRIPTION 

Referring to FIG. 1 the inventive method of the document 
collection processing of the present invention is set forth. At 
step 110 the method of the present invention generates a 
frequency count for each term in each document in the 
collection (or set) of documents. The term “data objects” in 
this context refers to information Such as documents, files, 
records etc. Data objects may also be referred to herein as 
documents. 

In an optional preprocessing step 100 the terms in each 
document are reduced to their canonical forms and a pre 
determined set of “stop' words are ignored. Stop words are 
typically those words that are used as concept connectors but 
provide no actual content such as “a” “are” “do” “for” etc. 
The list of common stop words is well known in the art. 
Suffix strippers that reduce a set of similar words to their 
canonical forms are also well known in the art. Such a 
stripper or parser will reduce a set of words such as 
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computed, computing and computer to a stem word "com 
put thereby combining the frequency counts for Such words 
and reducing the overall size of the set of terms. 

At step 120 the heterogeneous collection of data objects 
is partitioned by concept domain into Sub-collections of like 
concept. If it is known that one or more separate Sub 
collections within a larger collection of data are homog 
enous in nature, the initial partitioning need not be done for 
those known homogenous data collections. For initial sort 
ing of data objects into more conceptually homogeneous Sub 
collections, the bisecting k-means algorithm in a recursive 
form with k=2 at each stage to obtain k clusters is preferably 
used. Clustering techniques have been explored in “A Com 
parison of Document Clustering Techniques” by M. Stein 
bach et al. Technical Report 00-034, Department of Com 
puter Science and Engineering, University of Minnesota. 
Although the bisecting k-means algorithm is preferred, the 
'standard k-means algorithm or other types of spatial 
clustering algorithms may be utilized. Other types of clus 
tering algorithms including hierarchical clustering algo 
rithms may be used. 

Preferentially, the plurality of data object clusters can be 
further refined by performing a series of iterations of the 
bisecting k-means algorithm. At step 130, the Singular Value 
Decomposition (described below) is then applied to reduce 
each of these k clusters or sub-collections of documents to 
generate a reduced vector space having approximately 200 
orthogonal dimensions. At 200 dimensions, the size is 
manageable yet able to capture the semantic resolution of 
the sub-collection. Different sizes may be used depending on 
constraints such as available computing power and time. 

At step 140, using the k-means or other appropriate 
algorithm, clustering is then performed on each of these 
reduced vector spaces to discover vector clusters (represent 
ing core concepts) and their centroid vectors for each 
Sub-collection. Alternatively, instead of applying the clus 
tering algorithm to the reduced vector space, the vector 
clusters and centroid vectors could be obtained from the 
clustering data obtained at step 120. Once these centroid 
vectors are obtained, a predetermined number of closest 
terms to each of these centroid vectors are found at step 150. 
In a preferred embodiment of the present invention the 
number of key words is set to 10 per cluster although 
different numbers of key words may be appropriate in 
different situations. These are used as keywords to label this 
sub-collection thereby identifying the concept cluster 
therein. Each of the k vector spaces provides a different 
resolution to the underlying concepts present in the data and 
the context of each one is represented by its own set of 
keywords. 

Having computed the LSI vector space for each contex 
tually related Sub collection of documents and having 
extracted the keywords that represent the core concepts in 
each, the next step 160 is to establish the contextual simi 
larity between these spaces. Step 160 is necessary to select 
and search contextually appropriate LSI vector spaces in 
response to a query. Two graph-link measures are developed 
to establish a similarity graph network. A user query is 
passed on to the similarity graph network where proper 
queries are generated for each LSI vector space, and then 
each works independently to retrieve useful documents. 

This important step 160 is described in detail below. Sub 
collections C. C. . . . . C. denote the k concept domains 
obtained as a partition of the document class C using the 
k-means clustering algorithm. Terms T. T. . . . , T denote 
the corresponding term sets for the k concept domains. With 
t, denoting the cardinality of T, for i=1, 2, . . . . k and V. 
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6 
V. . . . . V. corresponding to the eigen matrices for the k 
term spaces in the SVD representation, then there are f 
factors in each of these LSI spaces and equation (4) forms 
the rank reduced term eigen basis for the i-th concept 
domain. 

V=fviv. . . . v, (4) 

Doument sets, D. D. . . . , D are the corresponding 
document sets for the k concept domains. Let d, denote the 
cardinality of D, for i=1, 2, . . . . k. Further, let U, 
U. . . . . U be the corresponding eigen matrices for the k 
document spaces in the SVD representation. Here, U. 
u'u.'... u? forms the rank reduced document eigen basis 
for the i-th concept domain. TT,?nT, is the set of common 
terms for the concept domains C, and C. In addition, t, is the 
cardinality of T, m, V.V. is the term similarity matrix for 
the concept domain C, m, is the restriction of m, to the term 
set Q-obtained by selecting only those rows/columns of m, 
corresponding to the terms appearing in Q (for example, 
m–m, for Q-T). The projection of the term vector v into 
the term space generated by the SVD is given by Viv for the 
i-th concept domain. 
The method of the present invention exploits two different 

ways in which the similarity between two concept domains 
can be measured as set forth in FIGS. 2a and 2b. The first 
similarity measure is the number of terms common to each 
concept domain. With common terms, it is necessary to 
exclude high frequency terms that act as constructs for the 
grammar rather than conveying any actual meaning. This is 
largely achieved during document preprocessing in step 100 
by filtering them with a stop-word list, but if such prepro 
cessing was not performed the operation could be performed 
now in order to exclude unnecessary high frequency terms. 
The first measure captures the frequency of occurrence of 

common terms between any two concept domains. The 
underlying idea is that if many terms are common to their 
vector spaces, then they ought to be describing the same 
thing, i.e., they have similar semantic content and provide 
similar context. This process is described with reference to 
FIG.2a. Considering the concept domains C, and C in the 
case where the common set T is non-empty, the proximity 
between these two spaces is defined to be of order Zero and 
the frequency measure to be given by equation (5). 

(5) 

At step 210 of FIG.2a this frequency measure is determined 
for each pair of sub-collections. When T is empty, there are 
no common terms between sub-collections C, and C. There 
may be, however, Some other space C which has common 
terms with both C, and C, i.e., T, and T are both non 
empty. Then, the concept spaces C, and C, could be linked 
via an intermediate space C. At step 220 of FIG.2b this is 
determined. In the case where there are several choices for 
this intermediate space, the “strongest link' is selected at 
step 230 using equations (6) and (7). Here, the proximity 
between C, and C, is stated as being of order one and the 
frequency measure is given by equation (6) with the simi 
larity measure S1 given by equation (7) where p is the 
proximity between two spaces. 
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ippi (6) 
s: = max 

it i 

s1=(sp+p) (7) 

The similarity measure above takes into account the proX 
imity between the two concept spaces along with the occur 
rence of common terms. Using the data from steps 210 and 
230 a similarity graph network can be mapped showing a 
relationship between sub-collections, either directly or 
through a linking Sub-collection at step 240. 

The second measure of similarity is more sensitive to the 
semantics of the common terms, not just how many are 
shared by two concept domains. The semantic relationships 
between the common terms (no matter how many there are) 
in each of the concept domains are examined to determine 
whether they are related in the same way. 

At step 250 of FIG. 2b, the correlation between two 
matrices X and Y (both of dimensions mxn) is measured, 
preferably by use of equations (8), (9) (10) and (11). 

(8) 
X, Y) = 1 Xi - X Yi - Y 

r(X, Y) = i. i. Six Sy 
i=l i=1 

where 

1 i 1 i (9) 
X = i 2. Xij, Y = i 2. Yii, 

i=l i=1 i=l i=1 

1 i (10) 
Six = - X, min), i=l 

1 V 2 (11) Sy =XXYi 

At step 260 one of the matrices (say X) is held fixed while 
the other one (Y) is permuted (rows/columns). For each such 
permutation, the Mantel test statistic is computed at Step 
265. At step 270 the number of times where the obtained 
statistic is greater than or equal to (NGE) the test statistic 
value obtained with the original X and Y is counted. The 
total number of Such permutations is denoted by N. 
Usually, around 1000 permutations are sufficient for 5% 
level of significance and 5000 permutations for 1% level of 
significance. The p-value for the test is then determined at 
step 275 by equation (12) and the results of the Mantel test 
are considered acceptable is the p-value is within a prede 
termined range considering the number of permutations used 
to achieve the level of significance. For 1000 permutations, 
the p-value should be less than approximately 0.05 to 
consider the test result acceptable. 
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NGE+ 1 

Nruns + 1 
(12) p-value = 

Corresponding to the first similarity measure, the semantic 
measure for a proximity of order Zero is determined at Step 
280 by equation (13). 

(13) 

Similarly, the measure for the first order proximity is deter 
mined at step 285 by equation (14). 

(14) 

Then at step 290 the final semantic similarity measure s2 is 
given by equation (15) where p again is the proximity 
between the two spaces. 

S2 = (s -- p) ' (15) 

A preferred embodiment of the present invention uses the 
second similarity measure when comparing the semantics of 
LSI vector spaces. But it should be noted that its validity is 
given by the first similarity measure (the proportion of 
common terms). Suppose the second measure has a very 
high value (strong semantic relationship) but it turns out that 
there were only two common terms out of a total of 100 
terms in each concept domain. Then the measure is subject 
to high error. In this situation, the first measure clearly 
exposes this fact and provides a metric for validating the 
semantic measure. Both measures are needed to obtain a 
clear indication of the semantic similarity (or lack thereof) 
between two concept domains. The most preferred measure 
of similarity, therefore, is the product of these two. 

Having measured the contextual similarity between vec 
tor spaces, the method resulting similarity graph network 
and “identifying concept’ terms are used in information 
retrieval or data mining operation. In order to perform an 
information retrieval, the similarity between the query and a 
concept domain's vector space so that useful documents in 
it may be retrieved. 

With reference to FIG. 3, the usual user query Q is a set 
of terms in 

as input at step 310 by the user. The user may also specify 
the degree of similarity desired in search results. If a greater 
degree of searching freedom is desired, the system will 
expand the query vector as described below. A representative 
query vector is then generated at step 320 as the normalized 
sum of each of the projected term vectors in the LSI space. 
Note that there might be several possible cases, e.g., (1) all 
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the terms in Q are present in the concept domain term set T. 
(2) Some terms are present, or (3) none are present. 
At step 330, the sub-collections in which all the query 

terms exist in the term set for a concept domain (i.e., 
sub-collection) are identified. At step 340, if such multiple 
domains exist then, a ranking of the domains, along with the 
“meaning each conveys, is helpful to decide which one to 
query. If a user has an idea of what he or she is looking for, 
then the “identifying concept terms provided (as described 
above) become useful. On the other hand, for the explorative 
user without a fixed goal, the ranking Supports Serendipitous 
discovery. 
The “identifying concept’ terms are naturally terms asso 

ciated with the closest (in cosine measure) projected term 
vectors to the query vector. Semantically, these terms are 
also closest to the query terms. As a member of this concept 
domain, this term set is the best candidate to represent the 
domain in trying to uncover what the user meant by the 
query. The ranking is just the value of the cosine measure 
between the “identifying concept term vector and the query 
vector. A list can be presented to the user so that he or she 
is able to decide which domains should be searched for 
matching documents. Results are returned to the user in 
separate lists for each concept domain (sub-collection) at 
step 350 of FIG. 1. Once the user determines which sub 
collections to query based on the lists of ranked Sub 
collections, at step 360, the information retrieval software 
uses the standard LSI approach of cosine based vector space 
similarity to retrieve document matches at step 370 which 
are then presented to the user at step 380. Alternatively, the 
selection of the best Sub-collections to query can be per 
formed automatically by selecting those with the highest 
rank first. This would tend to be used more in a strict 
information retrieval system rather in the more interactive 
text-mining environment. In a more complicated case some 
of the query terms are missing from the term set for the 
concept domain. Again, two approaches are used. In the first 
approach the process chooses to ignore those missing terms 
and just proceed as before with terms that are present. In the 
alternative approach, the process examines relationships 
between existing terms in the concept domain with the 
non-existent ones present in the query. 

If missing terms are simply ignored, as before, an “iden 
tifying concept’ term and a rank is presented to the user, but 
additional care must be taken, for in this case all the query 
terms do not match. A possible solution is to scale down the 
rank by the proportion of query terms that were actually used 
to find the concept term. Then the concept term is obtained 
exactly as before. The other case in which non-existent 
query terms are used is actually a particular instance of the 
neXt One. 

In the worst-case scenario none of the query terms are 
present in the term set for a concept domain. The question 
arises whether one would want to query this domain at all. 
One thing is Sure—if there are concept domains that fall into 
the previous two cases, they should definitely be exploited 
before any domain falling into this case. One way that this 
domain can be queried is to examine associations of terms 
across concept domains to discover synonyms existing in 
this domain, starting with the query terms. In other words, 
the entire information space is explored to obtain not just the 
query terms themselves, but also terms that are strongly 
related to them semantically. To control the method, a first 
order association (degree one) is imposed to limit search 
(where Zero order implies the first case described above). 

This version of the method depicted in the flow diagram 
3 differs from the above discussion only in that the query 
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10 
vector for a concept domain is computed at step 320 as the 
weighted Sum of its projected term vectors in a concept 
domain similar to some other concept domain that actually 
contains the query terms. The selection of this other concept 
domain is based on the domain similarity measure described 
above (the product measure performs well for this). Once the 
concept domain is selected that contains the query vectors 
and also is closest in meaning to the one to be queried, the 
expanded query vector is constructed for the query domain. 
With this expanded query vector, it is easy to generate 
“identifying concept terms, as before in steps 330 through 
370. 

There are two main functions performed in the compu 
tation and querying of a distributed LSI space. The first 
function consists of creating a classification scheme for 
specifying the multiple LSI vector spaces and consists of 
steps 110 through 160 and, optionally, step 100 of FIG. 1 
and, depending on the similarity technique used, the steps of 
FIG. 2a or 2b. The second function consists of actually 
querying this, distributed network of spaces as described by 
steps 310 through 370 of FIG. 3. From a functional per 
spective, however, these two functions are independent of 
each other and the first function can be performed at various 
locations in a distributed network as depicted in FIG. 4. In 
FIG. 4 a network configuration for a distributed LSI network 
is set forth in which an LSI hub processor 410 is used to 
control the various data object clustering and information 
query requests. LSI hub processor 410 has three functions: 
brokering queries, generating similarity graph networks and 
indexing (ore re-indexing) newly arrived documents. As one 
or more servers 421–423 are added to the network each 
having access to a plurality of data objects in an associated 
database 431–433, the LSI hub processor 410 controls the 
distributed processing of the data objects in accordance with 
the method of the present invention in FIG. 1 and FIGS. 2a 
and/or 2b in order to develop a comprehensive network 
graph of all data objects across all servers and databases. It 
should be understood that LSI hub processor 410 may 
perform some or all of the steps set forth in the partitioning 
and similarity processing method described above or it may 
only control the processing in one ore more of the servers 
421–423. LSI hub processor 410 can then respond to an 
information retrieval or data mining query from a user 
terminal 440. In response to a query from the user terminal 
440, the LSI hub processor executes the method of the 
present invention as described in FIG. 2 and sends query 
results back to user terminal 440 by extracting those data 
objects from one or more databases 431–433. From user 
terminal 440 the user may request LSI hub processor 410 to 
use the expanded query as discussed above providing extra 
flexibility to the user. 

In this manner LSI hub processor 410 oversees the 
computationally intensive clustering operations, decompos 
ing operations and generation of the centroid vectors. LSI 
hub processor 410 may also be used to more efficiently 
physically partition data between databases by redirecting 
the placement of similar clusters in the same database in 
order to create concept domains having a greater number of 
data objects thereby making Subsequent retrieval or text 
mining operations more efficient. LSI hub processor 410 
may also be used to index new documents in a relevant 
partition, either physically or virtually, in order to place 
documents having similar semantic attributes in the same 
conceptual domain. In presenting a result to a user, the LSI 
hub processor can be requested by the user to present either 
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a ranked list of results grouped by concept domain or a 
ranked list of results across all queried domains, depending 
on user preference. 
An embodiment of the present invention was used to 

partition and query the NSF Awards database that contains 5 
abstracts of proposals funded by the NSF since 1989. 
Information on awards made prior to 1989 is only available 
if the award has since been amended. A total of 22,877 
abstracts selected from 378 different NSF programs were 
used with a total count of 114,569 unique terms. 

The distributed LSI method of the present invention 
provides a set of concept classes, the number of these 
dependent on the level of resolution (or similarity), along 
with a set of keywords to label each class. The actual 
selection of the final set of concept classes is an iterative 15 
process whereby the user tunes the level of resolution to suit 
his or her purpose. To assist the user, the algorithm provides 
Some metrics for the current cluster. For example, concepts 
classes (represented by their keywords) for two such levels 
of resolution are listed below. 

10 

Level of Resolution: Low 
Class 1={ccr, automatically, implementations, techniques, 

project, algorithms, automatic, systems, abstraction. high 
level} 

Class 2-university, award, support, students, at, universi 
ties, institutional, provides, attend, faculty} 

Class 3-study, constrain, meridional, thermohaline, ocean, 
climate, hemispheres, greenland, observations, eastward 

Class 4-species, which, animals, how, genetic, animal, 

25 

evolutionary, important, understanding, known 30 

Level of Resolution: High 
Class 1-runtime, high-level, run-time, execution, concur 

rency, application-specific, Software, object-based, 
object-oriented, dsm 35 

Class 2={problems, approximation, algorithmic, algorithms, 
approximating, algorithm, computationally, Solving, 
developed, algebraic 

Class 3-support, award, university, institutional, attend, 
universities, students, forum, faculty, committee 40 

Class 4-materials, ceramic, fabricate, microstructures, fab 
rication, ceramics, fabricated, manufacture, composite, 
composites 

Class 5={meridional, wind, magnetosphere, magneto 
spheric, circulation, hemispheres, imf, magnetohydrody 
namic, field-aligned, observations} 

Class 6-plate, tectonic, faulting, strike-slip, tectonics, 
uplift, compressional, extensional, geodetic, geody 
namic 

Class 7={compositions, isotopic, composition, hydrous, car- 50 
bonaceous, fractionation, carbon, minerals, dissolution, 
silicates 

Class 8-cells, protein, proteins, cell, which, regulation, 
gene, regulated, biochemical, expression} 

Class 9-species, evolutionary, deb, genus, populations, 55 
endangered, ecological, phylogeny, diversification, diver 
sity 
The preliminary clusters and concept labels obtained 

using the present invention show that the algorithm seems 
adept at finding new (or hidden) concepts when the level of 60 
resolution is increased. Further, the concept labels returned 
by the algorithm are accurate and get refined as the level of 
resolution is increased. 

In this case, a simple implementation of the query algo 
rithm for distributed LSI was used. Given a query (set of 65 
terms), the algorithm produces a set of query terms for each 
LSI space in the distributed environment, which is further, 
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refined by a cut-off score. The algorithm uses a set of 
similarity metrics, as discussed earlier. Results from indi 
vidual LSI queries are collected, thresholded and presented 
to the user, categorized by concept. A subset of the NSF 
Awards database containing 250 documents was selected 
from each of the following NSF directorate codes: 

1. ENG Engineering 
2. GEO Geosciences 
3. SBE Social, Behavioral and Economic Sciences 
4. HER Education and Human Resources 
5. MPS Mathematical and Physical Sciences 
6. CSE Computer and Information Science and Engineer 

1ng 
7. BIO Biological Sciences 
Through these selections, the entire collection of 1750 

documents was ensured to be semantically heterogeneous. 
Next, eight different LSI spaces were computed—one for all 
documents belonging to each directorate code, and a final 
one for the entire collection. The distributed query algorithm 
was run on the seven LSI spaces and the usual query on the 
comprehensive space. For comparison purposes, the actual 
document returned provided the final benchmark because 
the distributed LSI query mechanism was expected to per 
form better. 
The main query consisted of the terms {brain, simula 

tion, and this was fed to the query algorithm. Further, a 
cut-off of 0.5 (similarity) was set system-wide. The extended 
query sets (using the cut-off) generated by the algorithm are 
listed below. 

BIO: {brain, simulations (2), extended, assessment 
CSE: neural, simulation} 
EHR, ENG, GEO, MPS: mechanisms, simulation} 
SBE: {brain, simulation} 
The final query results were as follows. The query on the 

larger LSI space returned no results which had similarity 
scores greater than 0.5. However, the top ten contained a 
couple of documents related to brain simulation but with low 
scores. These two documents were reported in the results 
from BIO and SBE with similarity scores greater than 0.5. 
Another document (not found earlier) was reported from the 
CSE space with a score above 0.5. This document turned out 
to be an abstract on neural network algorithms that indeed 
was related to the query. The other spaces returned no 
documents with similarity scores above 0.5. 
The above description has been presented only to illus 

trate and describe the invention. It is not intended to be 
exhaustive or to limit the invention to any precise form 
disclosed. Many modifications and variations are possible in 
light of the above teaching. The applications described were 
chosen and described in order to best explain the principles 
of the invention and its practical application to enable others 
skilled in the art to best utilize the invention on various 
applications and with various modifications as are Suited to 
the particular use contemplated. 
We claim: 
1. A computer-implemented method for processing a 

collection of data objects for use in information retrieval and 
data mining operations comprising the steps of: 

generating a frequency count for each term in each data 
object in the collection; 

partitioning the collection of data objects into a plurality 
of Sub-collections using the term-by data object infor 
mation, wherein each Sub-collection is based on the 
conceptual dependence of the data objects within; 

generating a term-by-data object matrix for each Sub 
collection; 


