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(57) ABSTRACT 
Technologies pertaining to computing a respective TF-IDF 
value for each term in each document of a relative large 
document corpus are described herein. TF-IDF values are 
computed with respect to terms in documents of a large docu 
ment corpus by in a single pass over the document corpus. 
Secondary Sorting functionality of a distributed computing 
framework is exploited to compute TF-IDF values efficiently. 
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COMPUTING TF-IDF VALUES FOR TERMS 
IN DOCUMENTS IN A LARGE DOCUMENT 

CORPUS 

BACKGROUND 

0001. There are currently an incredibly large number of 
documents available on the World WideWeb. Furthermore, 
web-based applications allow users to easily generate content 
and publish such content to the World WideWeb. Exemplary 
web-based applications include Social networking applica 
tions that are employed by users to post status messages, 
commentary, or the like, micro-blogging applications, 
wherein a user can generate and publish relatively short mes 
sages (up to 140 characters in length), web log(blog) appli 
cations that facilitate user creation of online accessible jour 
nals, amongst other web-based applications. Additionally, as 
the public is becoming increasingly proficient with comput 
ing technologies, more and more people are creating web 
pages that are accessible on the World WideWeb by way of a 
web browser. 
0002. As the number of web-accessible documents has 
increased, it has become increasingly challenging to identify 
keywords that are descriptive of content of Such documents 
(for each document). For example, identifying descriptive 
keywords of a web-based document can facilitate classifying 
web-based documents in accordance with certain topics, 
identifying Subject matter trends which can be employed in 
connection with selecting advertisements to present to users, 
for utilization in information retrieval, such that when a user 
issues a query that includes one or more of the keywords that 
are known to be relevant to content of a web-based document, 
the web-based document that includes the keyword will be 
positioned relatively prominently in a search results list. 
0003. An exemplary approach for identifying keywords 
that are descriptive of content of documents is computing 
term frequency-inverse document frequency (TF-IDF). This 
metric, described generally, combines two different metrics 
(a first metric and a second metric) to ascertain a score for a 
keyword in a document. The first metric is the frequency of 
the keyword in the document being analyzed. For example, if 
the keyword occurs multiple times in the document, then Such 
keyword may be highly descriptive of the content (the topic) 
of the document. The second metric is the inverse document 
frequency, which indicates, for a corpus of documents that 
includes the document, a number of documents that include 
the keyword. For example, if every document in the document 
corpus includes the keyword, then Such keyword is likely not 
descriptive of content of any of the documents (such keyword 
occurs in most documents, and therefore is not descriptive of 
content of any of the documents). 
0004 Computing TF-IDF for each term in each document 
of a relatively large corpus of documents is too large a task to 
be undertaken on a single computing device. Accordingly, 
algorithms have been developed that leverage parallel pro 
cessing capabilities of distributed computing environments. 
Thus, the task of computing TF-IDF, for each keyword/docu 
ment combination in a relatively large corpus of documents, 
is distributed across several computing nodes, wherein the 
several computing nodes perform certain operations in par 
allel. Conventional algorithms for execution in the distributed 
computing environments, however, require multiple map-re 
duce operations (e.g., four map reduce operations). As a 
result, the input/output overhead of computing nodes in the 
distributed computing environment is relatively high. 
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SUMMARY 

0005. The following is a brief summary of subject matter 
that is described in greater detail herein. This Summary is not 
intended to be limiting as to the scope of the claims. 
0006. Described herein are various technologies pertain 
ing to computing a respective metric for each term in each 
document in a relatively large document corpus, wherein the 
respective metric is indicative of the descriptiveness of a 
respective term with respect to content of the document that 
include the respective term. Pursuant to an example, the met 
ric can be term frequency-inverse document frequency (TF 
IDF). Moreover, the metric can be computed for each term 
that occurs in each document of the document corpus through 
employment of a distributed computing programming frame 
work that is employed in a distributed computing environ 
ment, wherein the metric is computed for each term in each 
document in the document corpus in which a respective term 
occurs utilizing a single input pass over the document corpus. 
0007. A document corpus includes a plurality of docu 
ments, wherein each document in the plurality of documents 
comprises a plurality of terms. A first Subset of computing 
nodes receives the plurality of documents and executes the 
following acts over the plurality of documents substantially in 
parallel. First, a document is received at a first computing 
node in the first Subset of computing nodes, and the first 
computing node generates a list of terms that are included in 
the document and stores such list of terms in a memory buffer 
of the first computing node. The first computing node gener 
ates a hash table, wherein the hash table is organized such that 
keys of the hash table are respective terms in the document 
and values corresponding to such keys are respective numbers 
of occurrences of the terms. Accordingly, the first computing 
node can sequentially analyze terms in the list of terms, and if 
a term is not already included in the hash table, can update the 
hash table to include the term and update a value of the hash 
table to indicate that the term has occurred once in the docu 
ment. Moreover, when updating the hash table to include the 
term, the first computing node can output a data packet that 
indicates that the document includes the term. 
0008 If the term is already existent as a key in the hash 
table, then the first computing node can update a value cor 
responding to Such term in the hash table by incrementing 
Such value by one. Subsequent to generating the hash table, 
the first computing node can determine a number of terms in 
the document by Summing values in the hash table (or count 
ing terms in the list of terms). Based upon the number of terms 
in the document and the values in the hash table for corre 
sponding terms, the first computing node can compute, for 
each term in the document, a respective term frequency. The 
term frequency is indicative of a number of occurrences of a 
respective term relative to the number of terms in the docu 
ment. The first computing node can then output data packets 
that are indicative of term respective term frequencies for 
each term in the document. Other computing nodes in the first 
Subset of computing nodes can perform similar operations 
with respect to other documents in the document corpus in 
parallel. 
0009. A second subset of computing nodes in the distrib 
uted computing environment can receive term frequencies for 
respective terms in respective documents of the document 
corpus. Additionally, a computing node in the second Subset 
of computing nodes can receive, for each unique term, a 
respective value that is indicative of a number of documents in 
the document corpus that include a respective term. In other 
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words, based upon data packets received from the computing 
nodes in the first Subset of computing nodes (output when 
forming hash tables), computing nodes in the second Subset 
of computing nodes can compute a respective inverse docu 
ment frequency value for each unique term in documents in 
the document corpus. Again, the inverse document frequency 
is a value that is indicative of a number of documents in the 
document corpus that comprise the respective term. 
0010. Thereafter, utilizing respective term frequency val 
ues for terms in documents received from computing nodes in 
the first Subset of computing nodes, computing nodes in the 
second Subset of computing nodes can compute the metric 
that is indicative of descriptiveness of a respective term with 
respect to content of a document that includes the term (e.g., 
TF-IDF). In an exemplary embodiment, this metric can be 
employed in connection with information retrieval, such that 
when a query that includes a term is received, documents in 
the plurality of documents are respectively ranked based at 
least in part upon metrics for the term with respect to the 
documents. In another exemplary embodiment, the metric 
can be employed to automatically classify documents to Sur 
face terms that are descriptive of a topic of a document, to 
identify stop words in a document, or the like. 
0011. Other aspects will be appreciated upon reading and 
understanding the attached figures and description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012 FIG. 1 is a functional block diagram of an exem 
plary system that facilitates computing, for each term in each 
document in a document corpus, a metric that is indicative of 
descriptiveness of a respective term with respect to a docu 
ment that includes Such term. 
0013 FIG. 2 is a functional block diagram of an exem 
plary system that facilitates computing a respective term fre 
quency for each term in each document of a document corpus 
in a single pass over the document corpus. 
0014 FIG.3 illustrates an exemplary component that sorts 
data packets output by a plurality of computing nodes in a 
distributed computing environment. 
0015 FIG. 4 is a functional block diagram of an exem 
plary component that facilitates computing a metric that is 
indicative of descriptiveness of a term relative to content of a 
document that includes the term. 
0016 FIG. 5 is a flow diagram that illustrates an exem 
plary methodology for computing, for each term in each 
document of a document corpus, a respective term frequency 
inverse document frequency (TF-IDF) value. 
0017 FIG. 6 is a flow diagram that illustrates an exem 
plary methodology for computing, for each term in each 
document of a document corpus, a respective TF-IDF value. 
0018 FIG. 7 illustrates an exemplary computing device 

DETAILED DESCRIPTION 

0019 Various technologies pertaining to computing, for 
each term in each document of a document corpus, a respec 
tive metric that is indicative of descriptiveness of a respective 
term with respect to content of a document that includes the 
term will now be described with reference to the drawings, 
where like reference numerals represent like elements 
throughout. In addition, several functional block diagrams of 
exemplary systems are illustrated and described herein for 
purposes of explanation; however, it is to be understood that 
functionality that is described as being carried out by certain 

Dec. 26, 2013 

system components may be performed by multiple compo 
nents. Similarly, for instance, a component may be configured 
to perform functionality that is described as being carried out 
by multiple components. Additionally, as used herein, the 
term "exemplary' is intended to mean serving as an illustra 
tion or example of something, and is not intended to indicate 
a preference. 
0020. As used herein, the terms “component” and “sys 
tem” are intended to encompass computer-readable data Stor 
age that is configured with computer-executable instructions 
that cause certain functionality to be performed when 
executed by a processor. The computer-executable instruc 
tions may include a routine, a function, or the like. It is also to 
be understood that a component or system may be localized 
on a single device or distributed across several devices. 
0021. With reference now to FIG. 1, an exemplary system 
100 that facilitates computing, for each term in each docu 
ment of a document corpus, a respective value that is indica 
tive of descriptiveness of a respective term with respect to 
content of a document that include such term. Pursuant to an 
example, Such value can be a term frequency-inverse docu 
ment frequency (TF-IDF) value. The system 100 is particu 
larly well-suited for execution in a distributed computing 
environment that comprises a plurality of computing nodes 
that are in communication with one another, directly or indi 
rectly, and are executing in parallel to perform a computing 
task. A computing node, as the term is used herein, can refer 
to a standalone computing device. Such as, a server, a personal 
computer, a laptop computer, or other Suitable computing 
device that comprises a processor that executes instructions 
retained in a memory. A computing node may also refer to a 
processor core in a multi-core processor and memory associ 
ated therewith. Still further, a computing node can refer to 
hardware that is configured to perform specified operations, 
such as a field programmable gate array (FPGA) or other 
Suitable system. In still yet another exemplary embodiment, a 
computing node can refer to all or a portion of a system on a 
chip computing environment or cluster on chip computing 
environment. 

0022 Distributed computing environments generally 
execute software programs (computer executable algorithms) 
that are written in accordance with a distributed computing 
framework. An exemplary framework, in which aspects 
described herein can be practiced, is the map-reduce frame 
work, although aspects described herein are not intended to 
be limited to such framework. The map-reduce framework 
Supports map operations and reduce operations. Generally, a 
map operation refers to a master computing node receiving 
input, dividing Such input into Smaller Sub-problems, and 
distributing Such sub-problems to worker computing nodes. 
A worker node may undertake the task set forth by the master 
node and/or can further partition and distribute the received 
sub-problem to other worker nodes as several smaller sub 
problems. In a reduce operation, the master node collects 
output of the worker nodes (answers to all the sub-problems 
generated by the worker nodes) and combines such data to 
form a desired output. The map and reduce operations can be 
distributed across multiple computing nodes and undertaken 
in parallel so long as the operations are independent of other 
operations. As data in the map reduce framework is distrib 
uted between computing nodes, key/value pairs are employed 
to identify corresponding portions of data. 
0023 The system 100 comprises a data store 102, which is 
a computer-readable data storage device that can be retained 
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on a single computing device or distributed across several 
computing devices. The data store 102, therefore, may be a 
portion of memory, a hard drive, a flash drive, or other suitable 
computer readable data storage device. The data store 102 
comprises a document corpus 104 that includes a plurality of 
documents 106-108 (e.g., a first document 106 through a Zth 
document 108). In an exemplary embodiment, the document 
corpus 104 may be relatively large in size, such that the 
document corpus 104 may consume multiple terabytes, 
petabytes, or more of computer-readable data storage. In an 
exemplary embodiment, the plurality of documents 106-108 
may be a respective plurality of web pages in a search engine 
index. In another exemplary embodiment, the plurality of 
documents 106-108 may be a respective plurality of micro 
blogs generated by users of a web-based micro-blogging 
application. A micro-blogging application is one in which 
content generated by users is limited to some threshold num 
ber of characters, such as 140 characters. In yet another exem 
plary embodiment, the plurality of documents 106-108 can be 
status messages generated by users of a social networking 
application, wherein Such status messages are made available 
to the public by generators of Such messages. In still yet 
another exemplary embodiment, the plurality of documents 
106-108 can be scholarly articles whose topics are desirably 
automatically identified. Other types of documents are also 
contemplated, as the aforementioned list is not intended to be 
exhausting, but has been set forth for purposes of explanation. 
0024. The system 100 additionally comprises a frequency 
mapper component 110, a sorter component 112, a frequency 
reducer component 114, and a document labeler component 
116. The components 110-116 may be executed coopera 
tively by a plurality of computing nodes that are in commu 
nication with one another, directly or indirectly. Accordingly, 
one or more of the component 110-116 may be executing on 
a single computing node or distributed across several com 
puting nodes. Likewise, separate instances of the component 
110-116 can be executing in parallel on different computing 
nodes in a distributed computing environment. 
0025. Each document in the plurality of documents 106 
108 comprises a respective plurality of terms. As used herein, 
a term can be a word oran N-gram, wherein a value of N can 
be selected based upon a length of a phrase that is desirably 
considered. The frequency mapper component 110 receives 
the document corpus 104, and for each document in the 
document corpus 104 and for each term in each document of 
the document corpus 104, the frequency mapper component 
110 can compute a respective term frequency value, wherein 
a term frequency value for a term in a document is indicative 
of a number of occurrences of the term in the document 
relative to a total number of terms in the document. In an 
example, if the first document 106 includes 100 terms 
(wherein the 100 terms may include duplicate terms) and the 
term “ABC occurs 5 times in the first document 106, then the 
term frequency value for the term “ABC in the first docu 
ment 106 can be 

Again, the frequency mapper component 110 can compute a 
respective term frequency value for each term in each docu 
ment of the document corpus 104. 
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0026. In an exemplary embodiment, the frequency mapper 
component 110 can compute a respective term frequency 
value for each term in each document of the document corpus 
104 in a single pass over the plurality of documents 106-108 
in the document corpus 104. Pursuant to an example, the 
system 100 can comprise a memory buffer 118 that resides on 
a computing node that executes an instance of the frequency 
mapper component 110. Upon receiving a document (docu 
ment X) from the document corpus 104, the frequency map 
per component 110 can cause content 120 of document X (an 
exhaustive list of terms, including duplicative terms, included 
in document X) to be stored in the memory buffer 118. As will 
be described in greater detail below, the frequency mapper 
component 110 can analyze each term in the content 120 of 
document X in the memory buffer 118, and can compute term 
frequency values for respective unique terms in the content 
120 of document X. Additionally, the frequency mapper com 
ponent 110 can output data packets that are indicative of such 
respective term frequency values, discard the content 120 of 
document X from the memory buffer 118, and load content of 
another document from the document corpus 104 into the 
memory buffer 118 for purposes of analysis. Using this 
approach, documents in the document corpus 104 need not be 
analyzed multiple times by the frequency mapper component 
110 to compute term frequency values for terms included in 
documents of the document corpus 104. 
0027. For each unique term in each document loaded into 
the memory buffer 118 by the frequency mapper component 
110, the frequency mapper component 110 can output a plu 
rality of data packets. For instance, for each unique term in 
document X, the frequency mapper component 110 can out 
put a respective first data packet and a respective second data 
packet. The respective first data packet indicates that a respec 
tive term occurs in document X, while the second data packet 
indicates a term frequency value for the respective term in 
document X. 

0028. The sorter component 112 receives pluralities of 
data packets output by multiple instances of the frequency 
mapper component 110 and sorts such data packets, such that 
the values corresponding to identical terms (without regard to 
documents that include Such terms) are aggregated. As will be 
shown below, aggregation of values in this manner allows for 
a number of documents that include each respective unique 
term that occurs in at least one document in the document 
corpus 104 to be efficiently computed. 
0029. In more detail, the frequency reducer component 
114 receives sorted data packets output by the sorter compo 
nent 112 and computes the metric that is indicative of descrip 
tiveness of each term in each document of the document 
corpus 104 relative to respective content of a respective docu 
ment that includes a respective term based upon sorted data 
packets output by the sorter component 112. As discussed 
above, the sorter component 112 aggregates values corre 
sponding to data packets pertaining to identical terms output 
by the frequency mapper component 110. The frequency 
reducer component 114 can Sum the aggregate values, which 
facilitates computing, for each term included in any docu 
ment of the document corpus 104, a number of documents 
that include Such term. The frequency reducer component 
114 can additionally receive or compute a total number of 
documents included in the document corpus 104. Based upon 
the total number of documents in the document corpus 104 
and a number of documents that include a respective term, the 
frequency reducer component 114 can compute an inverse 
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document frequency value for each unique term in any docu 
ment of the document corpus 104. The frequency reducer 
component 114 can also receive for each term in each docu 
ment of the document corpus 104, a respective term fre 
quency value computed by the frequency mapper component 
110. Based upon Such values, the frequency reducer compo 
nent 114 can compute, for each term in each document of the 
document corpus 104, a respective metric that is indicative of 
descriptiveness of a respective term with respect to the docu 
ment that includes the respective term (TF-IDF value for the 
term in the document). 
0030. An exemplary algorithm that can be employed by 
the frequency reducer component 114 to compute TF-IDF 
values for respective terms in documents of the document 
corpus 104 is as follows: 

where w(t, d) is the metric (TF-IDF value). It is a number of 
times that term t occurs in document d, d is the number of 
terms contained in the document d, ID is the number of 
documents included in the document corpus D, and |{d:ted 
is the number of documents in the corpus D that include the 
termit. 

0031. A document labeler component 116 receives, for 
each term in each document of the document corpus 104, a 
respective value output by the frequency reducer component 
114, and selectively assigns a label to a respective document 
based at least in part upon the value. For instance, if the value 
(for a particular term in a certain document) is relatively high, 
the document labeler component 116 can indicate that such 
termis highly descriptive of content of the document. Accord 
ingly, for instance, if a query is issued that includes the term, 
the document can be placed relatively highly in a ranked list 
of search results. In still other embodiments, the document 
can be assigned a particular categorization or classification 
based upon the value for a term. Other labels are also con 
templated and are intended to fall under the scope of the 
hereto-appended claims. 
0032. With reference now to FIG. 2, an exemplary system 
200 that facilitates computing, for each term in each docu 
ment of the document corpus 104, a respective term fre 
quency value is illustrated. The system 200 comprises the 
data store 102, which includes the document corpus 104. The 
document corpus 104 comprises the plurality of documents 
106-108, and each document in the plurality of documents 
106-108 comprises a respective plurality of terms. The sys 
tem 200 further comprises the frequency mapper component 
110, which receives documents from the document corpus 
104. As mentioned above, the frequency mapper component 
110, in an exemplary embodiment, can be configured to 
execute in accordance with the map-reduce programming 
framework. Accordingly, the frequency mapper component 
110 receives data packets in the form of key/value pairs and 
outputs data packets in the form of key/value pairs. In an 
exemplary embodiment, the frequency mapper component 
110 can receive document content in the form of a key/value 
pair, wherein a key of the key/value pair is a document ID 
which uniquely identifies the document from amongst other 
documents in the document corpus 104, and wherein a value 
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of the key/value pair is content of the document (terms 
included in the respective document). 
0033. The frequency mapper component 110 includes a 
parser component 202 that receives the key/value pair and 
causes document content 204 to be retained in the memory 
buffer 118. Specifically, the parser component 202 can gen 
erate an array that comprises a list of terms 206 in the docu 
ment (wherein Such list of terms can include several occur 
rences of a single term). 
0034. A hash table generator component 208 generates a 
hash table 210 in the memory buffer 118, wherein the hash 
table is organized Such that a key thereof is a respective term 
in the list of terms 206 and a corresponding value in the hash 
table is indicative of a number of occurrences of the respec 
tive term in the list of terms 206. In an exemplary embodi 
ment, the hash table generator component 208 operates in the 
following manner. The hash table generator component 208 
accesses the list of terms 206 and selects, in sequential order, 
a term in the list of terms 206. The hash table generator 
component 208 then accesses the hash table 210 to ascertain 
whether the hash table 210 already comprises the term as a 
key thereof. If the hash table 210 does not comprise the term, 
then the hash table generator component 208 updates the hash 
table 210 to include the term with a corresponding value of 
for example, 1 to indicate that (up to this point in the analysis) 
the document includes the term once. Additionally, the hash 
table generator component 208 causes a key/value pair to be 
output when initially adding a term to the hash table 210. A 
key of such key/value pair is a compound key, wherein a first 
element of the compound key is the term and a second ele 
ment of the compound key is a wildcard. For instance, the 
wildcard can be a negative value or/and empty value. Effec 
tively, this key/value pair indicates that the term is included in 
the document (even though the document is not identified in 
the key/value pair). 
0035) If the term analyzed by the hash table generator 
component 208 is already existent in the hash table 210, then 
the hash table generator component 208 increments the cor 
responding value for the term in the hash table 210. The 
resultant hash table 210, then, includes all unique terms of in 
the document and corresponding numbers of occurrences of 
the terms in the document. 
0036. The frequency mapper component 110 also com 
prises a term frequency computer component 212 that, for 
each term in the hash table 210, computes a term frequency 
value for a respective term, wherein the term frequency value 
for the respective term is indicative of a number of occur 
rences of the term in the document relative to a total number 
of terms in the document. The term frequency computer com 
ponent 212 computes such values based upon content of the 
hash table 210. For example, the term frequency computer 
component 212 can Sum values in the hash table to ascertain 
a total number of terms included in the document. In an 
alternative embodiment, the frequency mapper component 
110 can compute the total number of terms in the document 
by counting terms in the list of terms 206. The term frequency 
computer component 212 can, for each term in the hash table 
210, divide the corresponding value in the hash table 210 (the 
total number of occurrences of a respective term in the docu 
ment) by the total number of terms in the document. The term 
frequency computer component 212 can Subsequently cause 
a respective second key/value pair to be output for each term 
in the hash table 210, wherein a key of such key/value pair is 
a compound key, wherein a first element is a respective term, 
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thea element is a document identifier, and wherein a value of 
the key/value pair is the respective term frequency for the 
respective term in the document. Thus, it is to be understood 
that the frequency mapper component 110 outputs two key/ 
value pairs for each unique term in the document (for each 
term in the hash table 210): a first key/value pair, wherein a 
first key of the first key/value pair comprises the term and the 
wildcard, and wherein a first value of the first key/value pair 
is, for example, 1; and a second key/value pair, wherein a 
second key of the second key/value pair comprises the term 
and the document identifier, and wherein a second value of 
the second key/value pair is the term frequency for the respec 
tive term in the document. 
0037 Exemplary pseudo-code corresponding to the fre 
quency mapper component 110 is set forth below for pur 
poses of explanation. 

class TF-IDF Computation Mapper 
method map(k: docid, V: doc content) 

creates hash table(k: term, V: count) X 
parses the content into a list of terms 
d 6-size of the list (the number of terms in the doc) 
for each term in list 

if X contains key term 
X.get(term).counts X.get(term).count + 1 

else 
x - (term, 1) 

emits: key=(term," 
for each term in X. keySet 

tfe-X.get(term).count f d 
emits: key=(term, docid).value=tf 

1 
1 1 ),value=1 

0038. Now referring to FIG. 3, an exemplary operation of 
the sorter component 112 is depicted. The sorter component 
112 effectively aggregates the values of key/value pairs with 
equivalent keys. As described above, the frequency mapper 
component 110 outputs a key/value pair for a term in a docu 
ment, wherein the key/value pair fails to explicitly identify 
the document in the key of Such key/value pair, rather, a 
wildcard (e.g., “ ”) is employed in Such key. This causes the 
frequency mapper component 110 to generate equivalent 
keys when a term is included in separate documents. Accord 
ingly, as shown, the sorter component 112 can receive key/ 
value pairs with the key (T1, “ ”), numerous times. When 
sorting the key/value pairs, the Sorter component aggregates 
the values of key/value pairs with equivalent keys. Thus, the 
sorter component 112 outputs the key/value pair (T1, “ ”), 
(1,1,1,...). The number of values in a key/value pair output 
by the sorter component 112, wherein the key comprises the 
wildcard character, is indicative of a number of documents 
that include the term identified in the key. Therefore, a second 
pass over the document corpus 104 need not be undertaken to 
compute an inverse document frequency value for a respec 
tive term in a document of the document corpus 104. 
0039. Now referring to FIG. 4, an exemplary operation of 
the frequency reducer component 114 is illustrated. The fre 
quency reducer component 114 receives key/value pairs out 
put by the sorter component 112. The frequency reducer 
component 114 comprises a document term counter compo 
nent 402 that computes a respective number of documents 
that include a respective unique term in a document of the 
document corpus 104. Specifically, the document term 
counter component 402 receives key/value pairs, and for each 
key/value pair that includes a wildcard as a portion of the key, 
Sums corresponding values in the key/value pair. For instance, 
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the sorter component 112 can output the key/value pair (T1. “ 
'), (1,1,1,1). The document term countercomponent 402 can 
Sum the values in this key/value pair and ascertain that the 
term T1 occurs in four documents of in document corpus. The 
frequency reducer component 114 can then compute, for each 
unique term in the document corpus 104, a respective inverse 
document frequency, wherein the inverse document fre 
quency is log 

defined above. The frequency reducer component 114 can 
thereafter compute a respective TF-IDF value for each term in 
each document of the document corpus 104. Therefore, for 
each term/document combination, the frequency reducer 
component 114 can output a respective TF-IDF value. This 
can be in the form of a key/value pair, wherein a key of the 
key/value pair is a compound key, wherein a first element of 
the compound key is a respective term, and a second element 
of the compound key is a respective document that includes 
the respective term, and a respective value of the key/value 
pair is the TF-IDF for the term/document combination. 
0040 Exemplary pseudocode that can be executed by the 
frequency reducer component 114 is set forth below for pur 
poses of explanation. 

1: class TF-IDF Computation Reducer 
2: in - total number of documents in corpus 
3: m - 0 (number of documents containing the term) 
4: method reducer (k: (term, docid), v: list oftfs) 
5: if doc id is empty 
6: m s- O 
7: for eachtfin tts 
8: m 6- m + t? 
9: else 

11: tff s- O 
12: fort? in ti?s 
13: tfidf s- t 
14: tfidfe-tf*log(n/m) 
15: emits: key=(term, docid), value=tfidf 

0041. With reference now to FIGS.5-6, various exemplary 
methodologies are illustrated and described. While the meth 
odologies are described as being a series of acts that are 
performed in a sequence, it is to be understood that the meth 
odologies are not limited by the order of the sequence. For 
instance, some acts may occur in a different order than what 
is described herein. In addition, an act may occur concur 
rently with another act. Furthermore, in Some instances, not 
all acts may be required to implement a methodology 
described herein. 

0042. Moreover, the acts described herein may be com 
puter-executable instructions that can be implemented by one 
or more processors and/or stored on a computer-readable 
medium or media. The computer-executable instructions may 
include a routine, a Sub-routine, programs, a thread of execu 
tion, and/or the like. Still further, results of acts of the meth 
odologies may be stored in a computer-readable medium, 
displayed on a display device, and/or the like. The computer 
readable medium may be any suitable computer-readable 
storage device, such as memory, hard drive, CD, DVD, flash 
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drive, or the like. As used herein, the term “computer-read 
able medium' is not intended to encompass a propagated 
signal. 
0043. Now referring to FIG. 5, an exemplary methodology 
500 that facilitates computing a respective TF-IDF value for 
each term in each document of a document corpus is illus 
trated. The methodology 500 is configured for execution in a 
distributed computing environment that comprises a plurality 
of computing nodes that are directly or indirectly in commu 
nication with one another. The plurality of computing nodes 
comprises a first Subset of computing nodes and a second 
subset of computing nodes. The methodology 500 starts at 
502, and at 504, at the first subset of computing nodes, a 
plurality of documents are received, wherein each document 
in the plurality of documents comprises a plurality of terms. 
At 506, at the first subset of computing nodes, for each term 
in each document in the plurality of documents, a respective 
term frequency value is computed, wherein term frequency 
values for respective terms in the plurality of documents are 
computed in a single pass over the plurality of documents. 
0044. At 508, at the second subset of computing nodes in 
the plurality of computing nodes, a respective inverse docu 
ment frequency value is computed for each unique term exis 
tent in any of the documents in the plurality of documents. At 
510, a respective TF-IDF value is computed based at least in 
part upon the respective term frequency value computed at 
506 and the respective IDF value computed at 508. TF-IDF 
values are computed without re-inputting the plurality of 
documents (e.g., TF-IDF values are computed in a single pass 
over the plurality of documents). The methodology 500 com 
pletes at 512. 
0045. Now referring to FIG. 6, an exemplary methodology 
600 that facilitates computing a respective TFIDF value for 
each term in each document of a document corpus is illus 
trated. The methodology 600, for instance, can be executed 
collectively by a plurality of computing nodes in a distributed 
computing environment. The methodology 600 starts at 602, 
and at 604 a document corpus is received. The document 
corpus comprises a plurality of documents, each document in 
the plurality of documents comprising a plurality of terms. 
0046. At 606, for each document in the document corpus, 
an array in a memory buffer is generated, wherein the array 
comprises a list of terms in the respective document (includ 
ing duplicative terms). At 608, a hash table is formed in the 
memory buffer to identify numbers of occurrences of respec 
tive unique terms in the list of terms. Specifically, the hash 
table is organized in accordance with a key and a respective 
value, the key of the hash table being a respective term from 
the list of terms, a respective value of the hash table being a 
number of occurrences of the respective term in the list of 
terms in the memory buffer. Accordingly, the hash table is 
populated with terms and respective values, wherein terms in 
the hash table are unique (no term is listed multiple times in 
the hash table). 
0047. At 610, a total number of terms in the respective 
document is counted by Summing the values in the hash table. 
At 612, for each term in the hash table for the respective 
document, a respective term frequency value is computed. 
0048. At 614, for each term in the hash table, a respective 

first key/value pair and a respective second key/value pair are 
output. The respective first key/value pair comprises a first 
key and a first value. The first key comprises the respective 
term and a wildcard character. The first value indicates an 
occurrence of the respective term in the respective document. 
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The respective second key/value pair comprises a second key 
and a second value, the second key comprising the respective 
term and an identifier of the respective document, the second 
value comprising the respective term frequency value for the 
respective term in the respective document. 
0049. At 616, key/value pairs are sorted based at least in 
part upon respective keys thereof. When such key/value pairs 
are sorted, values in key/value pairs with equivalent keys are 
aggregated. Values in key/value pairs with wildcard charac 
ters, Subsequent to Sorting, are indicative of a number of 
documents that include a respective term identified in the 
respective key of the key/value pair. 
0050. At 618, for each term in each document in the docu 
ment corpus, a respective TF-IDF value is computed based at 
least in part upon the number of documents that include the 
respective term, a number of documents in the document 
corpus, and the respective term frequency value for the 
respective term in the respective document. The methodology 
600 completes at 620. 
0051. Now referring to FIG. 7, a high-level illustration of 
an exemplary computing device 700 that can be used inaccor 
dance with the systems and methodologies disclosed herein is 
illustrated. For instance, the computing device 700 may be 
used in a system that Supports computing term frequency 
values for respective terms in a document. In another 
example, at least a portion of the computing device 700 may 
be used in a system that supports computing TF-IDF values 
for respective terms in respective documents of a document 
corpus. The computing device 700 includes at least one pro 
cessor 702 that executes instructions that are stored in a 
memory 704. The memory 704 may be or include RAM, 
ROM, EEPROM, Flash memory, or other suitable memory. 
The instructions may be, for instance, instructions for imple 
menting functionality described as being carried out by one or 
more components discussed above or instructions for imple 
menting one or more of the methods described above. The 
processor 702 may access the memory 704 by way of a 
system bus 706. In addition to storing executable instructions, 
the memory 704 may also store documents of a document 
corpus, term frequency values, etc. 
0.052 The computing device 700 additionally includes a 
data store 708 that is accessible by the processor 702 by way 
of the system bus 706. The data store 708 may be or include 
any suitable computer-readable storage, including a hard 
disk, memory, etc. The data store 708 may include executable 
instructions, documents, etc. The computing device 700 also 
includes an input interface 710 that allows external devices to 
communicate with the computing device 700. For instance, 
the input interface 710 may be used to receive instructions 
from an external computer device, from a user, etc. The com 
puting device 700 also includes an output interface 712 that 
interfaces the computing device 700 with one or more exter 
nal devices. For example, the computing device 700 may 
display text, images, etc. by way of the output interface 712. 
0053 Additionally, while illustrated as a single system, it 

is to be understood that the computing device 700 may be a 
distributed system. Thus, for instance, several devices may be 
in communication by way of a network connection and may 
collectively perform tasks described as being performed by 
the computing device 700. 
0054 While the computing device 700 has been presented 
above as an exemplary operating environment in which fea 
tures described herein may be implemented, it is to be under 
stood that other environments are also contemplated. For 
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example, hardware-only implementations are contemplated, 
wherein integrated circuits are configured to perform pre 
defined tasks. Additionally, system-on-chip (SoC) and clus 
ter-on-chip (CoC) implementations of the features described 
herein are also contemplated. Moreover, as discussed above, 
features described above are particularly well-suited for dis 
tributed computing environments, and Such environments 
may include multiple computing devices (such as that shown 
in FIG. 7), multiple integrated circuits or other hardware 
functionality, SoC systems, CoC systems, and/or some com 
bination thereof. 
0055. It is noted that several examples have been provided 
for purposes of explanation. These examples are not to be 
construed as limiting the hereto-appended claims. Addition 
ally, it may be recognized that the examples provided herein 
may be permutated while still falling under the scope of the 
claims. 
What is claimed is: 
1. A method configured for execution in a distributed com 

puting environment comprising a plurality of computing 
nodes that are directly or indirectly in communication with 
one another, the method comprising: 

at at least one computing node in a first Subset of computing 
nodes in the plurality of computing nodes, executing a 
plurality of acts, the plurality of acts comprising: 
receiving a plurality of documents, each document in the 

plurality of documents comprising a plurality of 
terms; 

in a single pass over the plurality of documents, for each 
document in the plurality of documents, and for each 
term in a respective document, computing a respec 
tive term frequency value that is indicative of a num 
ber of occurrences of a respective term in the respec 
tive document relative to a total number of terms in the 
respective document; and 

outputting the respective term frequency value to at least 
one computing node in a second Subset of computing 
nodes in the plurality of computing nodes; and 

at the at least one computing node in the second Subset of 
computing nodes in the plurality of computing nodes, 
executing a plurality of acts, the plurality of acts com 
prising: 
receiving the respective term frequency value from theat 

least one computing node in the first Subset of com 
puting nodes: 

computing a respective inverse document frequency 
value for each term in each document in the plurality 
of documents, the respective inverse document fre 
quency value indicative of a number of documents in 
the plurality of document that comprise the respective 
term; 

computing a metric that is indicative of descriptiveness 
of the respective term with respect to content of the 
respective document based at least in part upon the 
respective term frequency value and the respective 
inverse document frequency value; and 

storing the metric in association with the respective 
document in a computer-readable data storage device. 

2. The method of claim 1, wherein computing the respec 
tive term frequency value comprises executing a plurality of 
acts on the at least one computing node in the first Subset of 
computing nodes, the plurality of acts executed by the at least 
one computing node in the first Subset of computing nodes 
comprising: 
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parsing the respective document to generate a list of terms 
in the respective document; 

storing the list of terms in a memory buffer of the at least 
one computing node in the first Subset of computing 
nodes; 

computing a total number of terms in the list of terms in the 
memory buffer; and 

computing the respective term frequency value based at 
least in part upon the total number of terms in the list of 
terms in the memory buffer. 

3. The method of claim 2, wherein the plurality of acts 
executed by the at least one computing node in the first Subset 
of computing nodes further comprises: 

constructingahashtable, whereinkeys of the hashtable are 
respective terms in the respective document, and 
wherein values of the hash table are respective numbers 
of occurrences of the respective terms in the respective 
document; 

for each term in the list of terms in the memory buffer, 
accessing the hash table to ascertain whether the hash 
table comprises the respective term; 

if the hash table comprises the respective term, increasing 
a respective value for the respective term in the hash 
table; 

if the hash table fails to comprise the respective term, 
adding the respective term as a respective key in the hash 
table and updating a respective value for the respective 
key; and 

computing the respective term frequency value based at 
least in part upon the respective value for the respective 
term in the hash table. 

4. The method of claim 3, wherein the plurality of acts 
executed by the at least one computing node in the first Subset 
of computing nodes further comprises: 

if the hash table fails to comprise the respective term, 
outputting a data packet to the second Subset of comput 
ing nodes that indicates that the respective document 
comprises the respective term. 

5. The method of claim 4, wherein the plurality of acts 
executed by the at least one computing node in the first Subset 
of computing nodes further comprises: 

sorting data packets output by the at least one computing 
node in the first Subset of computing nodes based at least 
in part upon the indication that the respective document 
comprises the respective term; and 

aggregating values in the data packets based at least in part 
upon the sorting of the data packets, wherein aggregated 
values are indicative of the number of documents in the 
plurality of documents that comprise the respective 
term; and 

outputting the aggregated values to the at least one com 
puting node in the second Subset of computing nodes. 

6. The method of claim 5, further comprising executing a 
plurality of acts on the at least one computing node in the 
second Subset of computing nodes, the plurality of acts 
executed on the at least one computing node in the second 
Subset of computing nodes comprising: 

receiving the aggregated values output by the at least one 
computing node in the first Subset of computing nodes; 
and 

computing the number of documents in the plurality of 
documents that comprise the respective term based at 
least in part upon the aggregated values. 
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7. The method of claim 6 configured for execution in a 
distributed computing environment programming frame 
work. 

8. The method of claim 7, the distributed computing envi 
ronment programming framework being a map-reduce 
framework. 

9. The method of claim 1, wherein the respective term 
comprises multiple words. 

10. The method of claim 1, wherein the plurality of docu 
ments are a plurality of web pages. 

11. The method of claim 1, wherein the plurality of web 
pages are a plurality of micro-blogging entries. 

12. A system that facilitates computing a respective metric 
of descriptiveness of each term of each document in a docu 
ment corpus with respect to content of a respective document 
that comprises a respective term, the system comprising: 

a plurality of computing nodes that are directly or indi 
rectly in communication with one another, the plurality 
of computing nodes executing a plurality of computer 
executable components cooperatively through utiliza 
tion of a distributed computing framework, the plurality 
of computer-executable components comprising: 
a frequency mapper component that receives the docu 
ment corpus that comprises a plurality of documents, 
each document in the plurality of documents compris 
ing a respective plurality of terms, the frequency map 
per component computing a respective term fre 
quency value for each term in each document, 
wherein a term frequency value for the respective 
term in the respective document is indicative of a 
number of occurrences of the respective term in the 
respective document; and 

a frequency reducer component that receives term fre 
quency values for respective terms in respective docu 
ments and computes, for each of the terms in each of 
the documents, the respective metric of descriptive 
ness, the respective metric of descriptiveness for the 
respective term in the respective document computed 
based at least in part upon the respective term fre 
quency value for the respective term in the respective 
document, a number of documents in the document 
corpus, and a number of documents in the document 
corpus that include the term, wherein the respective 
metric is computed for the respective term in the 
respective document in a single input pass over the 
document corpus. 

13. The system of claim 12, wherein the distributed com 
puting framework is a map-reduce framework. 

14. The system of claim 13, wherein the frequency mapper 
component comprises: 

a parser component that receives the respective document 
from the document corpus, generates a list of terms 
included in the respective document, and stores the list 
of terms in a memory buffer of a computing node in the 
plurality of computing nodes; 

a hash table generator component that generates a hash 
table and populates the hash table with unique terms in 
the list of terms and respective values that indicate 
respective numbers of occurrences of the respective 
unique terms in the list of terms, wherein the hash table 
is stored in the memory buffer; and 

a term frequency computer component that computes term 
frequency values for respective unique terms in the hash 
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table based at least in part upon a number of terms in the 
list of terms and the respective values in the hash table. 

15. The system of claim 14, wherein the hash table genera 
tor component, for each unique term in the list of terms, 
outputs a first respective key/value pair, wherein a key of the 
first respective key/value pair comprises the respective term 
and a wildcard character, and wherein a value of the first 
respective key/value pair comprises a value that indicates an 
occurrence of the respective term in the respective document. 

16. The system of claim 15, wherein the term frequency 
computer component, for each unique term in the list of terms 
included in the document, outputs a second respective key/ 
value pair, wherein a second key of the second respective 
key/value pair comprises the respective term and an identifier 
of the respective document, and wherein a value of the second 
respective key/value pair comprises the respective term-fre 
quency value. 

17. The system of claim 16, wherein the plurality of com 
ponents further comprise a sorter component that sorts key/ 
value pairs output by the hash table generator component 
based at least in part upon respective keys of the key/value 
pairs, wherein the Sorter component aggregates values of 
key/value pairs that have equivalent keys, wherein the sorter 
component outputs sorted key/value pairs to the frequency 
reducer component. 

18. The system of claim 13, wherein each term comprises 
multiple words. 

19. The system of claim 13, wherein the plurality of docu 
ments are a plurality of web pages, and wherein a search 
engine ranks a Subset of the plurality of web pages in a list of 
search results responsive to receipt of a user query based at 
least in part upon respective metrics of descriptiveness of 
terms in the subset of the plurality of web pages. 

20. A computer-readable medium comprising instructions 
that, when executed collectively by a plurality of computing 
nodes in a distributed computing environment, cause the plu 
rality of computing nodes to perform acts, comprising: 

receiving a document corpus, the document corpus com 
prising a plurality of documents, each document in the 
plurality of documents comprising a plurality of terms; 

for each document in the plurality of documents, generat 
ing a respective array in a memory buffer of a computing 
node from amongst the plurality of computing nodes, the 
respective array comprising a list of terms in a respective 
document; 

counting a number of terms in the list of terms and storing 
the number in the memory buffer; 

forming a hash table in the memory buffer, the hash table 
comprising a key and a respective value, the key of the 
hash table being a respective term from the list of terms, 
the respective value of the hash table being a respective 
number of occurrences of the respective term in the list 
of terms in the respective document; 

populating the hash table with unique terms and respective 
values; 

computing, for each term in the hash table, a respective 
term frequency value, the respective term frequency 
value indicative of a number of occurrences of the 
respective term in the hash table relative to the number of 
terms in the list of terms; 

for each term in the hash table, outputting a respective first 
key/value pair and a respective second key/value pair, 
the respective first key/value pair comprising a first key 
and a first value, the first key comprising the respective 
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term and a wildcard, the first value indicating an occur 
rence of the respective term in the respective document, 
the respective second key/value pair comprising a sec 
ond key and a second value, the second key comprising 
the respective term and an identifier for the respective 
document, the second value comprising the respective 
term frequency value for the respective term; 

Sorting key/value pairs based at least in part upon respec 
tive keys therein, wherein values in key/value pairs with 
equivalent keys are aggregated when sorted, and 
wherein aggregated values are indicative of a number of 
documents that include the respective term; 

computing, for each term in each document in the docu 
ment corpus, a respective term frequency-inverse docu 
ment frequency value based at least in part upon the 
number of documents that include the respective term, a 
number of documents in the document corpus, and the 
respective term frequency value. 

k k k k k 


