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Goal

Get an overview of computational biology topics

Topics (genomics, metagenomics, proteomics, etc.)
Know basic elements in biology (gene to function)
Know some important databases
Know standard tools (Blast) and libraries (BioPython)

Have a basic culture of order of magnitude in computational biology

Quantity of data
Size of genomes
Size of organisms

Toward autonomy for design and implementation of methods

Case study of SNP detection
Protein structure prediction
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Lecture organization

Part I: Genomics

Session I: some background in biology, starting your project
Session II hands-on: development, simulation
Session III hands-on: application: database mining, sequence searching

1st Project to be handed-out on the 18th of October.

Part II: Structure prediction

Session I: history and state-of-the-art in protein structure prediction
Session II & III hands-on

2nd project to be handed out on the 15th of November

MSIAM/Ensimag/Teide?
Evaluation: project-based + quizz + bonus for participation
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Elements of biology
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Why studying biology?

Just as other sciences: understand the world around us

For human health: diseases, epidemics, etc.

For biotech production (e.g. synthesis of materials)

But also for studying environment
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Orders of magnitude: mass repartition

Biology is hardly about humans.

[YM Bar-On, PNAS 18]

humans ≈ 0.01% global living biomass.
In term of number of entities and biodiversity, microbes are by far the
winners.
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Tree of life

“Nothing in biology makes sense

except in the light of Evolution” T. Dobzhansky

When was the split between Homo and apes? ≈ 3M y. ago.
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Main split: prokaryotes and eukaryotes

Prokaryotes Eukaryotes
”Simple”, no nucleus Advanced, nucleus
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Focus on the microbial world
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The microbial world

They are everywhere... they work hard 24h a day... they fight against each
other... and they collaborate.

There are very diverse in terms of morphology, mechanisms, and genetics:
bacteria, fungus, viruses, picoeukaryotes, etc.
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Prokaryotes make nitrogen available for plants

[Canfield et al., Science 2010]
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Microbiome pumps the CO2 in the ocean

[Mayers et al., mBio 2023]

CO2 turnover: viruses kill 20% of the living biomass in the ocean every
day! [Suttle, Nat. Microbiol. 2007]
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A recent example: Wildfires in Autralia

95% of emitted CO2 has been pumped down by planktonic bloom.
[Nature 597, 459-460 (2021), Tang et al. Nature (2021)]
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Microbiome importance in human health

The dark side:

Covid-19
The bright side:

Health status highly correlated with the diversity
of the gut microbiome [Valdes et al. 2018]
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The human gut microbiome

2000’s 2010’s
Human genome Gut metagenomes

≈ 20k protein-coding genes

×100−−−→ ≈ 2M protein-coding genes

Human gut microbiome is rich! What microbes do there is absolutely
necessary to keep alive!
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Gut microbiota and higher order diseases: some examples

Some known associations:

Autism

[Li et al. Front. in Cell. Neur. 2017]

Type II diabetes (50 microbial genes → AUC ROC 0.81)
[Qin et al. Nature 2012]

Parkinson’s differential abundance of gut microbial species
[Heintz-Buschart et al. Mov. Disord. 2018]

C. Galiez (LJK-SVH) Computational biology September 24, 2024 16 / 38



Gut microbiota and higher order diseases

[Jackson et al. Nature’18]
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How to study living systems?

A tiny fraction of microbes are cultivable in a lab (probably less than
few percent).

Conducting biological/medical experiments is long and costly

How to study them, without observing them in the lab? How to study
jointly humans and bacteria?
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DNA: a universal way of coding (rather recent knowledge!)

Universal code

All known living organisms are coded through their DNA information. This
determines to a large extent their morphologies and functions.

1952 Hershey and Chase: DNA is known to encode genetic
information

1953 Physical structure (double-helix) of DNA is solved using X-Ray
diffraction by Franklin (but that’s Watson & Crick who got the
awards)
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Origins and evolution of micro-organisms

Not a fixed knowledge: we still continue to discover new branches of
life:

[Hug et al. 2016]

The Candidate Phyla Radiation (top right, in purple) has been discovered
in 2016!
Some facts are known, but the deep origins of microbes are still debated.C. Galiez (LJK-SVH) Computational biology September 24, 2024 20 / 38



How DNA determines an organism?

The big picture (for computer scientists): see video.

Proteins are responsible for most of the biological functions in organisms
(biochemical reactions (enzymes), nutrient transportation, structural
proteins, etc.)

C. Galiez (LJK-SVH) Computational biology September 24, 2024 21 / 38



Sequence-structure-function
paradigm
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Studying biological function through DNA information

From an organism to its genome...

→

Organism
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Studying biological function through DNA information

From an organism to its genome...

→ →

Organism DNA Illumina/Nanopore

↓

Genomes ←

few kbp - few Gbp 100’s bp - few kbp

How does it help?
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Bioinformatics: from genome to function
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Genomics, the first breakthrough

1977: first DNA sequencer.

You can now sequence a human cell for less than a thousand euros.
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What to do with these DNA
sequences?
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Example: association studies

Relates the variation of the genome to the phenotype. Recent review
[Uffelmann et al. 2023]

Define a predictor f : {A, T,C,G}M → [0, 1] such that it minimizes a loss
on a training set (~x1, z1), ..., (~xN , zN ):

min
f
−

N∑
i=1

zi. log f(~xi) + (1− zi). log(1− f(~xi))
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Lots of data is not just for fun!

Human genome: what size? 1 Kbp? 10 Mbp?

With f : {A, T,C,G}M → [0, 1], the theoretical number of input
possibilities is:

43.10
9
=101806179974 possibilities :-/

In practice, one “reference genome” and “only” ≈ 88.106 possible
mutation places [The 1000 Genomes Project Consortium, 2015] .

Which mutation is responsible for a specific disease?
Better with more data... and fine statistics.
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Scope of applications for DNA sequence data

Computationally processing DNA sequences has a huge number of
applications, in particular in the fields of:

clinics

ecology

biochemistry

...and sometimes involving the three at the same time!
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Artificial intelligence, second and recent breakthrough

Since 2021

Protein structure predictions (from DNA sequence) reached an accuracy
equal to X-Ray crystallography using deep neural networks.

So now, using easy accessible DNA information, biologists can predict how
protein interact with other compounds, and get more insight of the
functions of the genes.
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Biology from the data perspective: not only DNA!

Biology brings various types of data, to get insights on various questions:
Sequences ATTCAGTACAT

(Meta)Genomic: DNA sequence of one (several) organism

Protein structures

X-Ray or NMR structures
New: computationally resolved structures

Abundances

Marker gene/species abundance
Expression level of genes

Images

Neuroimaging
Cell imaging

Mass spectrometry
...
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Two reasons pushing computational biology forward

Computational biology

Biological data coupled with
statistical models, machine learning, data visualization.

Availability of data

Computing capacities
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Hands-on
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Hands-on: realistic public health issue

Breaking news

Bad infections kill many people. Antibiotics do nothing.

Hands-on in two parts, you will develop tools to:

Identify responsible gene

Model the 3D structure of the involved protein
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Disclaimer

No fully guided syllabus

Act as a junior professional

Analyze provided information, think of a solution
Ask/discuss with your colleagues
Ask/discuss with your senior colleague (me)
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Plan of this session

First, think and plan - 1h.

Skim the context in the hands-on/session1 on the git (15 min)

Try to understand individually the work you will have to do and write
down questions you have (10 min)

Share your understanding with people in your group (10 min)

We share together our understanding and elaborate a common
strategy (20 min).

Then start developing - till the end :).

Start developing T1, paying attention to pitfalls (noise in the data in
particular)

Build your own tests. You can make use of the data in the
hands-on/reference-data directory
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Genomics

From DNA to reads...

→ →

DNA Illumina reads (∼ 250bp)

ηerr ≈ 1%

Assembly: from reads to contigs:
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Sequencing data

Two leading technologies:

Illumina: pieces of sequences (called reads, 150-250bp)
+: reliable, about 1% sequencing errors.
-: short reads, only have local view of the genome
Errors: rare (1 over 200 bases) almost uniformly distributed, almost all
mutations.

Nanopore: long reads, 10kb-100kb
+: long reads, easy to assemble, cheap and portable
-: high error rate
Errors: mostly insertion-deletion, mostly homopolymers (e.g. AAAAA)
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Predict the structure from sequence: the data
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CASP competition

Blind competition. Simple principle:
- a sequence is given
- have to predict the structure.

13th CASP...

... AI wins !
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